Vortex Creation in Superfluid Helium-4

  • P. V. E. McClintock
  • R. M. Bowley
Part of the NATO ASI Series book series (NSSB, volume 257)

Abstract

The hydrodynamics and the transport properties of bulk superfluid 4He are dominated by quantized vortices1–3. Many aspects of their behaviour, for example the physics both of individual vortex lines3 and of random tangles of vorticity (quantum turbulence)3–6 can now be regarded as being reasonably well understood. A notable gap in our physical understanding, however, relates to the long-standing question of how the vortex lines appear in the liquid in the first place. The present paper attempts to address this question in the light, particularly, of recent experimental results.

Keywords

Vortex Helium Vorticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H London, “Low Temperatures: A Report on the International Conference in Cambridge”, Physical Society, London (1947); and p151 of F London, “Super-fluids”, Wiley, New York (1954).Google Scholar
  2. 2.
    W F Vinen, The detection of a single quantum of circulation in liquid helium II, Proc. Roy. Soc. (Loud.) A 260:218 (1961).ADSCrossRefGoogle Scholar
  3. 3.
    R J Donnelly, “Quantized vortices in He II”, CUP, Cambridge (1990) and refer ences therein.Google Scholar
  4. 4.
    K W Schwarz, Turbulence in superfluid helium: steady homogeneous counterflow, Phys. Rev. B 18:245 (1978)ADSCrossRefGoogle Scholar
  5. K W Schwarz, Turbulence in superfluid helium: steady homogeneous counterflow, Three-dimensional vortex dynamics in superfluid 4HeGoogle Scholar
  6. K W Schwarz, Turbulence in superfluid helium: steady homogeneous counterflow, ibid 31:5782 (1985)Google Scholar
  7. K W Schwarz, Turbulence in superfluid helium: steady homogeneous counterflow, ibid 38:2 (1988).Google Scholar
  8. 5.
    J T Tough, Superfluid turbulence, in “Progress in Low Temperature Physics”, vol. VIII, D F Brewer, ed., pp 133–219, North-Holland, Amsterdam (1982).Google Scholar
  9. 6.
    J T Tough, The effect of coloured quadratic noise on a turbulent transition in liquid He II, in “Noise in Nonlinear Dynamical Systems”, vol. III, F Moss and P V E McClintock, ed., pp 1–21, CUP, Cambridge (1989).CrossRefGoogle Scholar
  10. 7.
    D D Awschalom and K W Schwarz, Observation of a remanent vortex line density in superfluid helium, Phys. Rev. Lett. 52:49 (1984).ADSCrossRefGoogle Scholar
  11. 8.
    G B Hess, Critical velocities in superfluid helium flow through 10hm diameter pinholes, Phys. Rev. Lett. 27:977 (1971).ADSCrossRefGoogle Scholar
  12. 9.
    B P Beeken and W Zimmermann, Variation of the critical order parameter phase difference with temperature from 0.4 K to 1.9 I. in the flow of superfluid 4He through a tiny orifice, Phys. Rev. B 35:1630 (1987).ADSCrossRefGoogle Scholar
  13. 10.
    O Avenel and E Varoquaux, Observation of singly quantized dissipation events obeying the Josephson frequency relation in the critical flow of superfluid 4He through an aperture, Phys. Rev. Lett. 55:2704 (1985)ADSCrossRefGoogle Scholar
  14. Varoquaux, M W Meisel and O Avenel, Onset of the critical velocity regime in superfluid 4He at low temperature, Phys. Rev. Lett. 57:2291 (1986).ADSCrossRefGoogle Scholar
  15. 11.
    K W Schwarz, Dissipative flow of liquid 4He in the limit of absolute zero, Phys. Rev. Lett. 57:1448 (1986)ADSCrossRefGoogle Scholar
  16. K W Schwarz, Temperature dependence of discrete dissipative events in superfluid 4He, Phys. Rev. Lett. 59:1167 (1987).ADSCrossRefGoogle Scholar
  17. 12.
    O Avenel and E Varoquaux, Avenel and Varoquaux reply, Phys. Rev. Lett. 59: 1168 (1987).ADSCrossRefGoogle Scholar
  18. 13.
    A L Fetter, Ions and vortices in liquid helium, in “The Physics of Liquid and Solid Helium”, K H Bennemann and J B Ketterson, ed., pp 207–305, Wiley, New York (1976).Google Scholar
  19. 14.
    R Zoll and K W Schwarz, New features of the vortex-ring transition, Phys. Rev. Lett. 31:1440 (1973).ADSCrossRefGoogle Scholar
  20. 15.
    R Zoll, Study of the vortex-ring transition in superfluid 4He, Phys. Rev. B 14: 2913 (1976).ADSCrossRefGoogle Scholar
  21. 16.
    R M Bowley, P V E McClintock, F E Moss and P C E Stamp, Vortex nucleation in isotopically pure superfluid 4He, Phys. Rev. Lett. 44:161 (1980).ADSCrossRefGoogle Scholar
  22. 17.
    P C Hendry and P V E McClintock, Continuous flow apparatus for preparing isotopically pure 4He, Cryogenics 27:131 (1987).CrossRefGoogle Scholar
  23. 18.
    G W Rayfield and F Reif, Quantized vortex rings in superfluid helium, Phys. Rev. 136:A1194 (1964).ADSCrossRefGoogle Scholar
  24. 19.
    G W Rayfield, Evidence for a peeling model of vortex ring formation by ions in liquid helium, Phys. Rev. Lett. 19:1371 (1967).ADSCrossRefGoogle Scholar
  25. 20.
    R J Donnelly and P H Roberts, Stochastic theory for the nucleation of quantized vortices in superfluid helium, Phil. Trans. Roy. Soc. (Lond.) A 271:41 (1970).ADSCrossRefGoogle Scholar
  26. 21.
    K W Schwarz and P S Jang, Creation of quantized vortex rings by charge carriers in superfluid helium, Phys. Rev. A 8:3199 (1973).ADSCrossRefGoogle Scholar
  27. 22.
    R M Bowley, Nucleation of vortex rings by negative ions in liquid helium at low temperatures, J. Phys. C 17:595 (1984).ADSCrossRefGoogle Scholar
  28. 23.
    C M Muirhead, W F Vinen and R J Donnelly, The nucleation of vorticity by ions in superfluid 411e I. Basic theory, Plail. Trans. Roy. Soc. (Loud.) A 311:433 (1984).ADSCrossRefGoogle Scholar
  29. 24.
    W F Vinen, “Liquid Helium: Proceedings of the International School of Physics Enrico Fermi”, course XXI, pp 336–355, Acadmic Press, New York (1963).Google Scholar
  30. 25.
    R M Bowley, P V E McClintock, F E Moss, G G Nancolas and P C E Stamp, The breakdown of superfluidity in liquid 4He III: nucleation of quantized vor-Phil. Trans. Roy. Soc. (Lond.) A 307:201 (1982).ADSCrossRefGoogle Scholar
  31. 26.
    G W Ravfield, Roton emission from negative ions in helium II, Phys. Rev. Lett. 16:934 (1966).ADSCrossRefGoogle Scholar
  32. 27.
    A Phillips and P V E McClintock, Breaking the rotos barrier: an experimental study of motion faster than the Landau critical velocity for roton creation in He II, Phys. Rev. Lett. 33:1468 (1974).ADSCrossRefGoogle Scholar
  33. 28.
    D R Allum, P V E McClintock, A Phillips and R M Rowley, The breakdown of superfluidity in liquid 4He: an experimental test of Landau’s theory, Phil. Trans. Roy. Soc. (Lond.) A 284:179 (1977).ADSCrossRefGoogle Scholar
  34. 29.
    T Ellis and P V E McClintock, The breakdown of superfluidity in liquid 4He V: measurement of the Landau critical velocity for roton creation, Phil. Trans. Roy. Soc. (Lond.) A 315:259 (1985).ADSCrossRefGoogle Scholar
  35. 30.
    G G Nancolas and P V E McClintock, Quenching of the ion/ vortex-ring transition in He II by intense electric fields, Phys. Rev. Lett. 48:1190 (1982).ADSCrossRefGoogle Scholar
  36. 31.
    R M Rowley, G G Nancolas and P V E McClintock, Vortex nucleation in ultradilute superfluid 311e/4He solutions, Phys. Rev. Lett. 52:659 (1984).ADSCrossRefGoogle Scholar
  37. 32.
    G G Nancolas, R M Rowley and P V E McClintock, The breakdown of superfluidity in liquid 4He IV: influence of 3He isotopic impurities on the nucleation of quantized vortex rings, Phil. Trans. Roy. Soc. (Lond.) A 313:537 (1985).ADSCrossRefGoogle Scholar
  38. 33.
    J S Brooks and R J Donnelly, The calculated thermodynamic properties of superfluid helium-4, J. Phys. Chem. Ref. Data 6:51 (1977).ADSCrossRefGoogle Scholar
  39. 34.
    P C Hendry, N S Lawson, C D H Williams, P V E McClintock and R M Rowley, Inhibition of vortex nucleation by phonons in He II, in “Elementary Excitations in Quantum Fluids”, K Ohbayashi and M Watabe, ed., Springer-Verlag, Berlin (1989).Google Scholar
  40. 35.
    P C Hendry, N S Lawson, P V E McClintock, C D H Williams and R M Bowley, The breakdown of superfluidity in liquid 4He VI: Macroscopic quantum tunnelling by vortices in isotopically pure He II, Phil. Trans. Roy. Soc. (Lond.) A (in press).Google Scholar
  41. 36.
    A O Caldeira and A J Leggett, Influence of dissipation on quantum tunnelling in macroscopic systems, Phys. Rev. Lett. 46:211 (1981).ADSCrossRefGoogle Scholar
  42. 37.
    R M Rowley and F W Sheard, Motion of negative ions at supercritical drift velocities in liquid 4He at low temperatures, Phys. Rev. B 16:244 (1977).ADSCrossRefGoogle Scholar
  43. 38.
    R M Rowley, Vortex nucleation by negative ions in liquid 4He, J. Phys. C 9:L367 (1976).CrossRefGoogle Scholar
  44. 39.
    C M Muirhead, W F Vinen and R. J Donnelly, The nucleation of vorticity by ions in 4He II. Theory of the effect of dissolved 3He, Proc. Roy. Soc. (Lond.) A 402:225 (1985).ADSCrossRefGoogle Scholar
  45. 40.
    A J Dahm, Evidence for condensation of 3He atoms on the surface of bubbles in liquid 411e, Phys. Rev. 180:259 (1969).ADSCrossRefGoogle Scholar
  46. 41.
    V B Shikin, Interaction between impurity excitation and negative ions in liquid helium Sov. Phys. JETP 37:718 (1973).ADSGoogle Scholar
  47. 42.
    D O Edwards and W F Saarn, The free surface of liquid helium, in “Progress in Low Temperature Physics”, vol VII A, D F Brewer, ed., pp 283–369, North-Holland, Amsterdam (1978).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • P. V. E. McClintock
    • 1
  • R. M. Bowley
    • 2
  1. 1.Physics DepartmentLancaster UniversityLancasterUK
  2. 2.Physics DepartmentThe UniversityNottinghamUK

Personalised recommendations