Electrons on Helium in a Quantizing Magnetic Field

  • M. J. Lea
Part of the NATO ASI Series book series (NSSB, volume 257)


Electrons above the surface of superfluid helium are held in a vertical potential well formed by the repulsion of the helium atoms and the attraction of the image or polarization charges induced in the liquid, which may be augmented by a vertical electric holding field F z Below 1K all the electrons can be in the quantum ground state as far as vertical motion is concerned. However, the electrons are free to move parallel to the helium surface (the x–y plane) and form a non-degenerate two-dimensional electron gas (2DEG), density n, with a Maxwell-Boltzmann distribution of thermal velocities. Their mobility µ in a horizonatal electric field is limited by collisions with He atoms from the vapour and with the surface wave excitations, or ripplons, on the liquid helium. Electron-electron correlations are also very important and lead to a phase transition to a classical electron solid at low temperatures. This solid phase prevents the Fermi degenerate gas regime from being reached for electrons on bulk liquid. This coupled 2-D system of electrons and helium is of great interest both for the properties of the electrons and for the information which can be obtained about the helium itself.


Landau Level Helium Atom Drude Model Superfluid Helium Hall Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Iye, J. Low Temp.Phys. 40: 441 (1980).ADSCrossRefGoogle Scholar
  2. 2.
    M. Saitoh, J.Phys.Soc.Japan 42: 201 (1977).ADSCrossRefGoogle Scholar
  3. 3.
    Yu.P. Monarkha, Fiz.Nizk.Temp. 2: 1232 (1976).Google Scholar
  4. Yu.P. Monarkha, Sov.J. Low Temp.Phys. 2: 600 (1976);Google Scholar
  5. G. Beni and P.M. Platzman, Phys.Rev.Lett. 36:626 (1976)ADSCrossRefGoogle Scholar
  6. G. Beni and P.M. Platzman, Phys.Rev.Lett. 36: 1350 (E) (1976).ADSCrossRefGoogle Scholar
  7. 4.
    R. Mehrotra, C.J. Guo, Y.Z. Ruan, D.B. Mast and A.J. Dahm, Phys.Rev. B29: 5239 (1984)ADSGoogle Scholar
  8. 5.
    V.A. Buntar,Yu.Z. Kovdyra,V.N. Grigor’ev, Yu.P. Monarkha and S.S. Sokolov, Fiz.Nizk.Temp. 13: 789 (1987).Google Scholar
  9. V.A. Buntar,Yu.Z. Kovdyra,V.N. Grigor’ev, Yu.P. Monarkha and S.S. Sokolov, Sov.J. Low Temp.Phys. 13: 451 (1987).Google Scholar
  10. 6.
    V.A. Buntar, V.N. Grigoriev, O.I. Kirichek, Yu.Z. Kovdyra,Yu.P. Monarkha and S.S. Sokolov, J.Low Temp.Phys. 79: 323 (1990).ADSCrossRefGoogle Scholar
  11. 7.
    R. Mehrotra, J.Low Temp.Phys. 79: 311 (1990).ADSCrossRefGoogle Scholar
  12. 8.
    T. Ando, A.B. Fowler and F. Stern, Rev.Mod.Phys. 54: 437 (1982).ADSCrossRefGoogle Scholar
  13. 9.
    M. Saitoh, Solid State Commun. 52: 63 (1984).ADSCrossRefGoogle Scholar
  14. 10.
    M.I. Dykman and L.S. Khazan, Sov.Phys.JETP 50: 747 (1979).ADSGoogle Scholar
  15. 11.
    W.T. Sommer and D.J. Tanner, Phys.Rev.Lett. 27: 1345 (1971).ADSCrossRefGoogle Scholar
  16. 12.
    R. Mehrotra and A. J. Dahm, J.Low Temp.Phys. 67: 641 (1987).Google Scholar
  17. 13.
    L. Wilen and R. Giannetta, J.Low Temp.Phys. 72: 353 (1988).ADSCrossRefGoogle Scholar
  18. 14.
    R.W. van der Heijden, H.M. Gijsman and F.M. Peeters, J.Phys.C.Solid State Phys. 21: L1165 (1988).ADSCrossRefGoogle Scholar
  19. 15.
    M.J. Lea, A.O. Stone and P. Fozooni, Europhys.Letts 7: 641 (1988).ADSCrossRefGoogle Scholar
  20. 16.
    R.W. van der Heijden, M.C.M. van de Sanden, J.H.G. Surewaard, A.Th.A.M. de Waele, H.M. Gijsman and F.M. Peeters, Europhys.Letts 6: 75 (1988).ADSCrossRefGoogle Scholar
  21. 17.
    M.J. Lea, in press.Google Scholar
  22. 23.
    D.B. Mast, A.J. Dahm and A.L. Fetter, Phys.Rev.Lett. 54: 1706 (1985);ADSCrossRefGoogle Scholar
  23. D.C. Glattli, E.Y. Andrei, G. Deville, G. Poitrenaud and F.I.B. Williams, Phys.Rev.Lett. 54: 1710 (1985).ADSCrossRefGoogle Scholar
  24. 19.
    A.O. Stone, P. Fozoni, M.J. Lea and M. Abdul-Gader, J.Phys.Condens.Matter 1: 2743 (1989).Google Scholar
  25. 20.
    O.I. Kirichek, B.A. Buntar’, V.N. Grigor’ev and Yu.Z. Kovdyra, Kharkov Report 33–88 (1988);Google Scholar
  26. V.N. Grigor’ev, O.I. Kirichek, Yu.Z. Kovdyra and Yu.P. Momarkha, Fiz.Nizk.Temp. 16: 394 (1990).Google Scholar
  27. 21.
    A.O. Stone, Ph.D. Thesis, University of London (1990).Google Scholar
  28. 22.
    M.I. Dykman, J.Phys.O Solid State Phys. 15:7397(1982); private communication.Google Scholar
  29. 23.
    P. Fozooni, M.J. Lea, A.O. Stone and J. Frost, 19th. Intern.Conf.Low Temp.Phys. (1990).Google Scholar
  30. 24.
    M.J. Lea, J. Frost, A.O. Stone and P. Fozooni,19th. Intern.Conf.Low Temp.Phys. (1990).Google Scholar
  31. 25.
    A. Isihara, Solid State Physics, 42: 271 (1989).Google Scholar
  32. 26.
    A.O. Stone, M.J. Lea, P. Fozooni and J. Frost, J.Phys.CM 2: 485 (1990).Google Scholar
  33. 27.
    M.A. Stan and A.J. Dahm, Phys.Rev B40: 8995 (1990).Google Scholar
  34. 28.
    J. Surewaard, Unpublished Report, Technishe Universiteit, Eindhoven (1988).Google Scholar
  35. 29.
    M. Saitoh, J.Phys.Soc.Japan 56: 706 (1987).Google Scholar
  36. 30.
    S. Edel’man, Zh.Eksp.Teor.Fiz. 77: 673 (1979)Google Scholar
  37. S. Edel’man, Sov,Phys.JETP 50: 338 (1979).Google Scholar
  38. 31.
    L. Wilen and R. Giannetta, Phys.Rev.Letts. 60: 231 (1988).ADSCrossRefGoogle Scholar
  39. 32.
    M. Saitoh, J.Phys.C 16: 6983 (1983).MathSciNetGoogle Scholar
  40. 33.
    M.I. Dykman, Sov.J. Low Temp.Phys. 6: 268 (1980).Google Scholar
  41. 34.
    A.M.L. Janssen, R.W. van der Heijden, A.Th. A.M. de Waele and H.M. Gijsman and F.M. Peeters, Surf.Sci. 229: 365 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • M. J. Lea
    • 1
  1. 1.Department of Physics Royal Holloway & Bedford New CollegeUniversity of LondonEgham, SurreyUK

Personalised recommendations