Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 257))

Abstract

The properties of two-dimensional electron fluids and crystals bound to a bulk helium surface have been studied extensively for the last decade1. These systems are limited to the classical regime due to theinstability of a highly charged surface to fluctuations. The maximum density on a bulk helium surface is 2.4×109 cm−2. At this density the melting temperature ∝ \( \sqrt{n} \) is ~ 1 K compared to a Fermi energy ∝ n ~ 50 mK. Here n is the electron areal density. The high melting temperature is a result of the large potential energy reduction for the Coulomb interaction in the lattice phase where small electron separations are excluded.

Supported in part by National Science Foundation Grant No. DMR-87-13922

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. J. Dahm and W. F. Vinen, Physics Today 40, 43 (1987).

    Article  Google Scholar 

  2. F. M. Peeters and P. M. Platzman, Phys. Rev. Lett. 50. 2021 (1983)

    Article  ADS  Google Scholar 

  3. P. M. Peeters, Phys. Rev. B 30, 159 (1984).

    Article  ADS  Google Scholar 

  4. H. Etz, W. Gombert, W. Idstein, and P. Leiderer, Phys. Rev. Lett. 53, 2567 (1984).

    Article  ADS  Google Scholar 

  5. Yu. M. Vil’k and Yu. P. Monarkha, Fiz. Nizk. Temp. 10, 901 (1984)

    Google Scholar 

  6. Yu. M. Vil’k and Yu. P. Monarkha, Sov. J. Low Temp. Phys. 10, 469 (1984).

    Google Scholar 

  7. V. V. Tartarskii, Fiz. Nizk. Temp. 12, 451 (1986)

    Google Scholar 

  8. V. V. Tartarskii, Soy. J. Low Temp. Phys. 12, 255 (1986).

    Google Scholar 

  9. X. L. Hu and A. J. Dahm, Phys. Rev. B 42, 2010 (1990).

    Google Scholar 

  10. M. Saitoh, Phys. Rev. B 40, 810 (1989)

    Article  ADS  Google Scholar 

  11. M. Saitoh, Surf. Sci. 229, 356 (1990).

    Article  ADS  Google Scholar 

  12. For a brief review of this theory, see K. J. Strandburg, Rev. Mod. Phys. 60, 161 (1988) and references therein.

    Google Scholar 

  13. H. W. Jiang and A. J. Dahm, Surf. Sci. 229, 352 (1990).

    Article  ADS  Google Scholar 

  14. H. W. Jiang, M. A. Stan, and A. J. Dahm, Surf. Sci. 196, 1 (1988).

    Article  ADS  Google Scholar 

  15. M. A. Stan and A. J. Dahm, Phys. Rev. B 40, 8995 (1989).

    Article  ADS  Google Scholar 

  16. V. A. Buntar, Y. Z. Kovdrya, V. N. Grigor’ev, Yu. P. Monarkha, and S.

    Google Scholar 

  17. S. Sokolov, Fiz. Nizk. Temp. 13, 789 (1987)

    Google Scholar 

  18. S. Sokolov, Sov. J. Low Temp. Phys. 12, 451 (1987).

    Google Scholar 

  19. H. W. Jiang and A. J. Dahm, Jap. J. Appl. Phys. 26, 751 (1987).

    Article  Google Scholar 

  20. V. B. Shikin and Yu. P. Monarkha, J. Low Temp. Phys. 16, 193 (1974).

    Article  ADS  Google Scholar 

  21. G. Deville, A. Valdes, E. Y. Andrei, and F. I. B. Williams, Phys. Rev. Lett. 53, 588 (1984).

    Article  ADS  Google Scholar 

  22. C. D. Glattli, E. Y. Andrei, and F. I. B. Williams, Phys. Rev. Lett. 60, 420 (1988).

    Article  ADS  Google Scholar 

  23. S. T. Chui and K. Esfarjani, preprint.

    Google Scholar 

  24. H. W. Jiang, H. L. Stromer, D. C. Tsui, L. N. Pfieffer, and K. W. West, Phys. Rev. Lett. 65, 633 (1990).

    Article  ADS  Google Scholar 

  25. R. W. van der Heijden, M. C. M. van de Sanden, J. H. G. Surewaard, A. T. A. M. de Waele, H. M. Gijsman and F. M. Peeters, Europhys. Lett. 6, 75 (1988).

    Google Scholar 

  26. H. W. Jiang and A. J. Dahm, Phys. Rev. Lett. 62, 1396 (1989).

    Article  ADS  Google Scholar 

  27. K. Kajita, Jpn. J. Appl. Phys. 25, Suppl. 3, 1943 (1987)

    Google Scholar 

  28. K. Kajita, Surf. Sci. 196, 29 (1988).

    Article  ADS  Google Scholar 

  29. For a review, see G. Gruner, Rev. Mod. Phys. 60, 1129 1988 ).

    Google Scholar 

  30. E. Y. Andrei, Phys. Rev. Lett. 52, 1449 (1984).

    Article  ADS  Google Scholar 

  31. F. M. Peeters and S. A. Jackson, Phys. Rev. B 34, 1539 (1986).

    Article  ADS  Google Scholar 

  32. M. H. Degani and O. Hipolito, Phys. Rev. B 32 3300 (1985).

    Article  ADS  Google Scholar 

  33. B. Lehndorff and K. Dransfeid, J. Phys. (France) 50, 2579 (1982).

    Google Scholar 

  34. P. W. Adams and M. A. Paalanen, Phys. Rev. Lett. 58, 2106 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Dahm, A.J. (1991). Electrons on Helium Films. In: Wyatt, A.F.G., Lauter, H.J. (eds) Excitations in Two-Dimensional and Three-Dimensional Quantum Fluids. NATO ASI Series, vol 257. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5937-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5937-1_52

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5939-5

  • Online ISBN: 978-1-4684-5937-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics