S(Q,ω) for Liquid 4He: What More do We Need to Know?

  • E. C. Svensson
Part of the NATO ASI Series book series (NSSB, volume 257)


Since I completed my review article1 on the temperature dependence of the dynamic structure factor S(Q,ω) of liquid 4He for the proceedings of the Hiroshima Symposium, there have been two very important developments: Stirling and Glyde2 have provided us with a much more complete set of results for the temperature dependence of S(Q,ω) at low Q (0.4 Å−1), and Glyde and Griffins have proposed a new and very appealing interpretation of S(Q,ω) covering the whole range of wave vectors Q and frequencies ω = 2πv for both the superfluid and normal phases of liquid 4He. In the Glyde-Griffin (GG) picture, the main peaks in S(Q,ω) at low Q (≲ 0.7 Å−1, phonon region), which have been known4 since 1965 to change relatively little on passing through the superfluid transition temperature, Tλ, correspond to collective zero-sound (ZS) modes as first suggested by Pines.s In contrast, the sharp peaks in S(Q,ω) at larger Q (≳0.8 Å−1), which have been known6,7 since 1978 to be present only below Tλ, correspond to single-particle (SP) excitations. A very schematic representation8 of the GG interpretation is shown in Fig. 1. The shaded regions are simply meant to indicate that the SP modes may disappear at low Q while the ZS modes are expected to disappear at high Q. Hybridization between the ZS and SP modes, which GG propose is responsible for the existence of a smooth continuous dispersion relation for the single excitations, might cause the shaded region to actually be pushed away from the solid curve.


Sharp Peak Bose Condensate Dynamic Structure Factor Superfluid Phase Crucial Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.C. Svensson, in “Elementary Excitations in Quantum Fluids”, ed. By K. Ohbayashi and M. Watabe ( Springer-Verlag, Heidelberg, 1989 ) p. 59.CrossRefGoogle Scholar
  2. 2.
    W.G. Stirling and H.R. Glyde, Phys. Rev. B 41, 4224 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    H. R. Glyde and A. Griffin, Phys. Rev. Lett. 65, 1454 (1990).ADSCrossRefGoogle Scholar
  4. 4.
    A.D.B. Woods, Phys. Rev. Lett. 14, 355 (1965).ADSCrossRefGoogle Scholar
  5. 5.
    D. Pines, in “Quantum Fluids”, ed. by D.F. Brewer ( Wiley, New York, 1966 ), p. 257.Google Scholar
  6. 6.
    E.C. Svensson, R. Scherm and A.D.B. Woods, J. de Phys. 39, C6–211 (1978).Google Scholar
  7. 7.
    A.B. Woods and E.C. Svensson, Phys. Rev. Lett. 41, 974 (1978).ADSCrossRefGoogle Scholar
  8. 8.
    A. Griffin and E.C. Svensson, Physica B 165&166, 487 (1990)Google Scholar
  9. 9.
    H.R. Clyde, these pr oceedings.Google Scholar
  10. 10.
    A. Griffin, these pr oceedings.Google Scholar
  11. 11.
    A. Griffin, in Ref. 1, p. 23.Google Scholar
  12. 12.
    A.D.B. Woods and E.O. Svensson, unpublished work from the study reported in Ref. 7.Google Scholar
  13. 13.
    E.C. Svensson, V.F. Sears, A.D.B. Woods and P. Martel, Phys. Rev. B 21, 3638 (1980).ADSCrossRefGoogle Scholar
  14. 14.
    E.C. Svensson, V.F. Sears and A. Griffin, Phys. Rev. B 23, 4493 (1981).ADSCrossRefGoogle Scholar
  15. 15.
    E.C. Svensson and A F. Murray, Physica 108B, 1317 (1981).Google Scholar
  16. 16.
    E.C. Svensson, W.G. Stirling, E. Talbot and H.R. Glyde, Jpn. J. Appl. Phys. 26 (Suppl. 26–3), 33 (1987).Google Scholar
  17. 17.
    E.F. Talbot, H.R. Glyde, W.G. Stirling and E.C. Svensson, Phys. Rev. B 38, 11229 (1988).ADSCrossRefGoogle Scholar
  18. 18.
    L.K.H. Andersen, W.G. Stirling, R. Scherm, A. Stunault, B. Fâk, A.J. Dianoux and H. Godfrin, to be published.Google Scholar
  19. 19.
    W.G. Stirling, these proceedings.Google Scholar
  20. 20.
    E.C. Svensson, P. Martel, V.F. Sears and A.D.B. Woods, Can. J. Phys. 54, 2178 (1976).ADSCrossRefGoogle Scholar
  21. 21.
    E.C. Svensson, in “Proceedings of the 1984 Workshop on High-Energy Excitations in Condensed Matter” (Los Alamos National Laboratory publication LA-10227-C, 1984 ), Vol. II, p. 456.Google Scholar
  22. 22.
    P.E. Sokol and W.M. Snow, these proceedings.Google Scholar
  23. 23.
    J. Maynard, Phys. Rev. B 14, 3868 (1976).ADSCrossRefGoogle Scholar
  24. 24.
    F. Mezei, Phys. Rev. Lett. 44, 1601 (1980).ADSCrossRefGoogle Scholar
  25. 25.
    R.A. Cowley and A.D.B. Woods, Can. J. Phys. 49, 177 (1971).ADSCrossRefGoogle Scholar
  26. 26.
    H.W. Jackson, Phys. Rev. A 4, 2386 (1971) and 8, 1529 (1973).ADSCrossRefGoogle Scholar
  27. 27.
    F. Iwamoto, K. Nagai and K. Nojima, in “Proc. 12th Int. Conf. on Low Temp. Phys.”, ed. by E. Kanda ( Keigaku Publ. Co., Tokyo, 1971 ) p. 189.Google Scholar
  28. 28.
    W. Götze and M. Lücke, Phys. Rev. B 13, 3825 (1976).ADSCrossRefGoogle Scholar
  29. 29.
    E. Manousakis and V.R. Pandharipande, Phys. Rev. B 33, 150 (1986).ADSCrossRefGoogle Scholar
  30. 30.
    K. Fukushima, N. Koyama and T. Sugiyama, Prog. Theor. Phys. 61, 367 (1979).ADSCrossRefGoogle Scholar
  31. 31.
    K. Fukushima and F. Iseki, Phys. Rev. B 38, 4448 (1988) and in Ref. 1, p. 144.Google Scholar
  32. 32.
    W.G. Stirling, in “Proc. 2nd Int. Conference on Phonon Physics”, ed. by J. Kollar, N. Kroo, N. Menyhard and T. Siklos ( World Scientific, Singapore, 1985 ) p. 829.Google Scholar
  33. 33.
    W.G. Stirling, Physica B 165&166, 501 (1990).Google Scholar
  34. 34.
    V.K. Wong, Phys. Lett. 61A, 454 (1977).CrossRefGoogle Scholar
  35. 35.
    H.R. Glyde and E.C. Svensson, in “Neutron Scattering”, ed. by D.L. Price and K. Sköld, Methods of Exp. Phys., Vol. 23, Part B ( Academic Press, New York, 1987 ) p. 303.Google Scholar
  36. 36.
    A.D.B. Woods, E.C. Svensson and P. Martel, in “Neutron Inelastic Scattering 1972” ( IAEA, Vienna, 1972 ) p. 359.Google Scholar
  37. 37.
    A.D.B. Woods, E.C. Svensson and P. Martel, in “Low Temperature Physics - LT14”, ed. by M. Krusius and M. Vuorio (North Holland, Amsterdam, 1975) Vol. 1, p. 187.Google Scholar
  38. 38.
    A.D.B. Woods, E.C. Svensson and P. Martel, in “Proc. of the Conf. on Neutron Scattering”, ed. by R.M. Moon (CONF-760601-P2, Natl. Tech. Inf. Serv., Springfield, VA, 1976) Vol. II, p. 1010.Google Scholar
  39. 39.
    A.D.B. Woods, E.C. Svensson and P. Martel, Can. J. Phys. 56, 302 (1978).ADSCrossRefGoogle Scholar
  40. 40.
    A.D.B. Woods, E.C. Svensson and P. Martel, Phys. Lett. 57A, 439 (1976).CrossRefGoogle Scholar
  41. 41.
    E.C. Svensson, W.G. Stirling, A.D.B. Woods and P. Martel, in Ref. 38, p. 1017.Google Scholar
  42. 42.
    A.D.B. Woods, P. Martel and E.C. Svensson, in “Neutron Inelastic Scattering 1977” (IAEA, Vienna, 1978 ) Vol. II, p. 37.Google Scholar
  43. 43.
    K.S. Pedersen and K. Carneiro, Phys. Rev. B 22, 191 (1980).ADSCrossRefGoogle Scholar
  44. 44.
    R.J. Donnelly, J.A. Donnelly and R.N. Hills, J. Low Temp. Phys. 44, 471 (1981).ADSCrossRefGoogle Scholar
  45. 45.
    W.G. Stirling, in “75th Jubilee Conf. on Helium-4”, ed. by J.G.M. Armitage ( World Scientific, Singapore, 1983 ) p. 109.Google Scholar
  46. 46.
    R.D. Etters, Phys. Rev. Lett. 16, 119 (1966).ADSCrossRefGoogle Scholar
  47. 47.
    L.D. Landau and I.M. Khalatnikov, Zh. Eksp. Teor. Fiz. 19, 637 (1949).Google Scholar
  48. 48.
    F. Mezei and W.G. Stirling, in Ref. 45, p. 111.Google Scholar
  49. 49.
    J. Ruvalds, Phys. Rev. Lett. 27, 1769 (1971).ADSCrossRefGoogle Scholar
  50. 50.
    J.H. Root and E.C. Svensson, Physica B (in Apress).Google Scholar
  51. 51.
    V.F. Sears, E.C. Svensson, P. Martel and A.D.B. Woods, Phys. Rev. Lett. 49, 279 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • E. C. Svensson
    • 1
  1. 1.Chalk River LaboratoriesAECL ResearchChalk RiverCanada

Personalised recommendations