Advertisement

Scattering of Atomic Hydrogen from the Surface of Liquid Helium Films

  • J. T. M. Walraven
Part of the NATO ASI Series book series (NSSB, volume 257)

Abstract

Liquid helium covered surfaces are indispensable in experiments with atomic hydrogen gas (H) at low temperature (T ≲ 1 K). Helium is used because H does not dissolve in this liquid, it is chemically inert and offers the weakest concievable atom-surface interation to the H atoms. These properties enable confinement of H gas while surface adsorption is unimportant except at the lowest temperatures. Therefore helium films are very effective in supressing massive surface catalized recombination in which solid molecular hydrogen is formed.

Keywords

Adsorption Energy Accommodation Coefficient Helium Surface Sticking Probability Buffer Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.J. Greytak and D. Kleppner, in: NEW TRENDS IN ATOMIC PHYSICS, Vol. II G. Grynberg and R. STORA (Eds.), Elsevier Sci. Publ., Amsterdam (1984) 1125–1230.Google Scholar
  2. 2.
    I.F. Silvera and J.T.M. Walraven, Prog. Low Temp. Phys. D.F. Brewer (Ed.), Elsevier Sci. Publ. X (1986) 139–370.Google Scholar
  3. 3.
    J.J. Berkhout and J.T.M. Walraven, in: SPIN-POLARIZED QUANTUM SYSTEMS, S. Stringari (Ed.), World Scientific Publ., Singapore (1989) 201–208.Google Scholar
  4. 4.
    D.S. Zimmerman and A.J. Berlinsky, Can. J. Phys. 61 (1983) 508–513.ADSCrossRefGoogle Scholar
  5. 5.
    Yu. Kagan and G.V. Shlyapnikov, Phys.Lett. 95A (1983) 309–312.ADSGoogle Scholar
  6. 6.
    B.W. Statt, Phys.Rev.B. 32 (1985) 7160–7164.ADSCrossRefGoogle Scholar
  7. 7.
    V.V. Goldman, Phys.Rev.Lett. 56 (1986) 612–615.ADSCrossRefGoogle Scholar
  8. 8.
    T.W. Hijmans and G.V. Shlyapnikov, Phys. Lett. 142 (1989) 45–48.CrossRefGoogle Scholar
  9. 9.
    E. Tiesinga, H.T.C. Stoof and B.J. Verhaar, Phys. Rev. (1990).Google Scholar
  10. 10.
    M.W. Cole, Phys. Rev. A 1 (1970) 1838–1840.ADSCrossRefGoogle Scholar
  11. 11.
    I.B. Mantz and D.O. Edwards, Phys. Rev. B 20 (1979) 4518–4526.ADSCrossRefGoogle Scholar
  12. 12.
    J.J. Berkhout, E.J. Wolters, R. van Roijen and J.T.M. Walraven, Phys.Rev.Lett. 57 (1986) 2387–2390.ADSCrossRefGoogle Scholar
  13. 13.
    D.S. Zimmerman and A.J. Berlinsky, Can. J. Phys. 62 (1984) 590–596.ADSCrossRefGoogle Scholar
  14. 14.
    J. Helffrich, M. Maley, M. Krusius and J.C. Wheatley, Phys. Rev. B 34 (1986) 65506–553.CrossRefGoogle Scholar
  15. 15.
    J.J. Berkhout, O.J. Luiten, I.D. Setija, T.W. Hijmans, T. Mizusaki and J.T.M. Walraven, Phys.Rev.Lett. 63 (1989) 1689–1692.ADSCrossRefGoogle Scholar
  16. 16.
    J.J. Berkhout, O.II. Höpfner, E.J. Wolters and J.T.N. Walraven, Jpn. J. Appl. Phys. 26 (1987) 231–232 LT-18.Google Scholar
  17. 17.
    Yu. Kagan, G.V. Shlyapnikov and N.A. Glukhov, JETP Lett. 40 (1984) 1072–1076.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. T. M. Walraven
    • 1
  1. 1.Van der Waals laboratoriumUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations