Advertisement

Nuclear Magnetism of 3He Films Adsorbed on the Surface of Graphite

  • J. Saunders
  • C. P. Lusher
  • B. P. Cowan
Part of the NATO ASI Series book series (NSSB, volume 257)

Abstract

The properties of 3He adsorbed on the surface of graphite exhibit a rich variety of phenomena as the areal density is changed. The system permits the study of two dimensional quantum liquids and solids, as well as 2D solids with an overlayer of fluid. Also because of the existence of registered solids, certainly in the first layer and possibly in the second layer, one can study quantum exchange in systems for which there is no 3D equivalent. In addition the multilayer fluid film shows evidence of quantum size effects.

Keywords

Areal Density Quantum Size Effect Landau Parameter High Temperature Series Expansion Susceptibility Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Nielson, J. P. McTague, W. Ellenson, J. Phys.(Paris), 32, C4–10 (1977)Google Scholar
  2. 2.
    for a review see J. G. Dash and M. Schick in The Physics of Liquid and Solid Helium, Part II, ed. K.H. Bennemann & J.B. Ketterson, (Wiley 1978 )Google Scholar
  3. 3.
    B. Cowan, L.A. El-Nasr, M. Fardis, A. Hussain, Phys.Rev.Lett. 58, 2308 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    J. Saunders, C.P. Lusher, B.P. Cowan, Phys.Rev.Lett. 64, 2523 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    H. Godfrin, unpublished.Google Scholar
  6. 6.
    D.S. Greywall, Phys.Rev. B41, 1842 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    M. Roger, Phys.Rev. B30, 6432 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    M. Roger, Phys.Rev.Lett. 64, 297 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    M.C. Cross, Jap.Journ.App.Phys. 26, Supp1. 26–3, 1855 (1987)Google Scholar
  10. 10.
    M.G. Richards, J.Phys.(Paris), 39, C6–1342 (1978)CrossRefGoogle Scholar
  11. 11.
    H. Franco, R. Rapp, H. Godfrin, Phys.Rev.Lett. 57, 1161 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    H. Godfrin, R. Ruel, D. Osheroff, Phys.Rev.Lett. 60, 305 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    D.S. Greywall and P.A. Busch, Phys.Rev.Lett. 62, 1868 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    V. Elser, Phys.Rev.Lett. 62, 2405 (1989)ADSCrossRefGoogle Scholar
  15. F. Abraham, J.Q. Broughton, P.W. Leung, V. Elser, Europhys.Lett. 12, 107 (1990)ADSCrossRefGoogle Scholar
  16. 15.
    G.A. Baker, H.E. Gilbert, J. Eve, G.S. Rushbrooke, Phys.Lett. 25A, 207 (1967)ADSGoogle Scholar
  17. 16.
    H. Lauter et.al. Can.J.Phys. 65, 1435 (1987)ADSCrossRefGoogle Scholar
  18. 17.
    S. van Sciver, Phys.Rev. B18, 277 (1978); heat capacity peaks observed in this work interpreted as second layer melting in ref.6.Google Scholar
  19. 18.
    In the first layer dTm/dp≈l85 KÅ2;Google Scholar
  20. S.V. Hering, S. van Sciver, O.E. Vilches, J. Low Temp.Phys. 25, 793 (1976)ADSCrossRefGoogle Scholar
  21. 19.
    The possibility of this phase has been suggested in ref.6.Google Scholar
  22. 20.
    K. Machida, M. Fujita Phys.Rev.B to be publishedGoogle Scholar
  23. 21.
    D.S. Greywall to be publishedGoogle Scholar
  24. 22.
    M. Roger private communicationGoogle Scholar
  25. 23.
    The parameters of this curve are; S3=48.6,S4=S6=58,S2=67.3; all Cn=1.2, o=-2.65 A.Google Scholar
  26. 24.
    M. Heritier, J. de Phys.Lett. 40, 451 (1979)CrossRefGoogle Scholar
  27. 25.
    H. Jichu and Y. Kuroda, Prog.Theor.Phys. 67, 715 (1982)ADSCrossRefGoogle Scholar
  28. 26.
    S. Tasaki, Prog.Theor.Phys. 79, 1311 (1988)ADSCrossRefGoogle Scholar
  29. 27.
    R.A. Guyer, Phys.Rev.Lett. 64, 1919 (1990)ADSCrossRefGoogle Scholar
  30. 28.
    A. Luther, J. Timonen, V. Pokrovsky, Phase Transitions in Surface Films, ed. J.G.Dash and J.Ruvalds, (Plenum 1979 )Google Scholar
  31. 29.
    J.M. Valles, R. Higley, B.R. Johnson, R.B. Hallock, Phys.Rev.Lett. 60, 428 (1988). Data shown are for 9.5 4He “layers”.Google Scholar
  32. 30.
    E. Krotscheck, M. Saarela, J.L. Epstein, Phys.Rev.Lett. 61, 1728 (1988)ADSCrossRefGoogle Scholar
  33. J.L. Epstein, E. Krotscheck, M. Saarela, Phys.Rev.Lett. 64, 427 (1990)ADSCrossRefGoogle Scholar
  34. 31.
    D.S. Greywall and P.A. Busch, Phys.Rev.Lett. 65, 64 (1990)ADSCrossRefGoogle Scholar
  35. 32.
    reviewed in P. Wolfle and D. Vollhardt, Superfluid 3He (Taylor and Francis 1990 )Google Scholar
  36. 33.
    D. Vollhardt, Rev.Mod.Phys. 56, 99 (1984)ADSCrossRefGoogle Scholar
  37. 34.
    K. Seiler, C. Gros, T.M. Rice, K. Ueda and D. Vollhardt, J. Low Temp. Phys. 64, 195 (1986) have performed such a calculation in 3D.ADSCrossRefGoogle Scholar
  38. 35.
    S. Havens-Sacco and, A. Widow, J. Low Temp.Phys. 40, 357 (1980)ADSCrossRefGoogle Scholar
  39. 36.
    H. Ramm,P. Pedroni, J.R. Thompson and H. Meyer, J.Low Temp. Phys. 2, 539 (1970)ADSCrossRefGoogle Scholar
  40. 37.
    E. Krotscheck, Phys.Rev. 832, 5713 (1985)Google Scholar
  41. 38.
    R. Higley, D. Sprague and R.B. Hallock, Phys.Rev.Lett. 63, 2570 (1989)ADSCrossRefGoogle Scholar
  42. 39.
    R. Guyer, K. McCall, and D. Sprague, Phys.Rev. B40, 7417 (1989)ADSGoogle Scholar
  43. 40.
    discussed in D.F. Brewer, Physics of Liquid and Solid Helium, ed. K.H. Bennemann and J.B. Ketterson, (Wiley 1978 )Google Scholar
  44. 41.
    D. Spanjaard, D. Mills, M. Beal-Monod, J. Low Temp.Phys. 34, 307 (1979)ADSCrossRefGoogle Scholar
  45. 42.
    A. Andreev, Progress in Low Temperature Physics vol.8, ed. D.F. Brewer (North Holland 1982) reviews bulk solid isotopic dilute mixtures.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. Saunders
    • 1
  • C. P. Lusher
    • 1
  • B. P. Cowan
    • 1
  1. 1.Millikelvin Laboratory, Royal Holloway and Bedford New CollegeUniversity of LondonEgham, SurreyUK

Personalised recommendations