Advertisement

Interface between Two Thin 3He-4He Liquid Mixtures Films

  • Jean Pierre Laheurte
  • Jean Claude Noiray
  • Jean Pierre Romagnan
Part of the NATO ASI Series book series (NSSB, volume 257)

Abstract

The reduction of one dimension size in liquids is of course a quite natural way to enhance the influencp of surface effects with respect to bulk contribution. The very first experiments on thin 4He films started in 1949. It was quickly understood that the study of such films, which thicknesses being as low as one or a few atomic layers, opened a new and fascinating research field: the two dimensional (2D) world and also the transition from this 2D to a three dimensional (3D) behaviour. Among the most spectacular results or discoveries on these films study, there is obviously the description of the superfluid transition in films as belonging to an universal class of transitions characteristic of the 2D world. This Kosterlitz Thouless transition describes the order disappearance by the thermal activation of a free vortex in the fluid1. Another quite interesting concept can be analysed in its limits with the help of helium mixtures films. It is the notion and existence of interface when it should appear between very thin films. Obviously the spatial extension and the localisation of an interface is directly related to the density profile in fluid systems. The region where the profile density sharply changes from one constant value corresponding to the bulk value of the first phase to another constant value associated to the bulk value of the second phase is the interface region. The spatial extension of the interface can reach a few atomic layers. So what is the meaning of an interface, when the sizes of the two phases become also of the order of a few atomic layers ? Do we expect to observe a one-phase system with a rather continuous density profile or is it possible that the two-phases system will still exist and that the spatial extension of the interface cold by reduced to one or less than one atomic layer ? To answer this question we can use3He-4He mixtures films as a very appropriate experimental system.

Keywords

Atomic Layer Free Energy Density Spatial Extension Surface Field Stratify Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Kosterlitz and D.J. Thouless, J. Phys. C6, 1181 (1973)ADSGoogle Scholar
  2. D.R. Nelson and J.M. Kosterlitz, Phys. Rev. Lett., 39, 1201 (1977)ADSCrossRefGoogle Scholar
  3. 2.
    G.E. Watson, J.D. Reppy and R.C. Richardson, Phys. Rev. 188, 384 (1969).ADSCrossRefGoogle Scholar
  4. E.H. Graf, D.M. Lee and J.D. Reppy, Phys. Rev. Lett., 19, 417 (1967).ADSCrossRefGoogle Scholar
  5. 3.
    J.R.G. Keyston et J.P. Laheurte, Phys. Lett, 24A, 132 (1967)CrossRefGoogle Scholar
  6. 4.
    J.P. Romagnan, J.P. Laheurte, J.C. Noiray and W.F. Saam, J. Low Temp. Phys., 30, 425 (1978)ADSCrossRefGoogle Scholar
  7. 5.
    J.P. Laheurte, J.C. Noiray, J.P. Romagnan and D. Sornette, J. Phys. France, 47, 39 (1986);CrossRefGoogle Scholar
  8. J.P. Laheurte, J.C. Noiray, J.P. Romagnan and D. Sornette, Phys. Rev. Lett. 53, 2421 (1984).ADSCrossRefGoogle Scholar
  9. 6.
    J.P. Desideri and D. Sornette, J. Phys. France, 49, 1411 (1988).CrossRefGoogle Scholar
  10. 7.
    R. Lipowsky and Gompper, Phys. Rev., 29, 5213 (1984).ADSCrossRefGoogle Scholar
  11. 8.
    M.E. Fisher and H. Nakanishi, J. Chem. Phys., 75, 5857 (1981);ADSCrossRefGoogle Scholar
  12. H. Nakanishi and M.E. Fisher, J. Chem. PHys., 78, 3279 (1983).ADSCrossRefGoogle Scholar
  13. 9.
    A.O. Parry and R. Evans, Phys. Rev. Lett., 64, 439 (1990).ADSCrossRefGoogle Scholar
  14. 10.
    J. Treiner, Private communicationGoogle Scholar
  15. 11.
    D.S. Sherrill and D.O. Edwards, Phys. Rev. B, 31, 1338 (1985);ADSCrossRefGoogle Scholar
  16. F.M. Gasparini, B. Bhattacharyya, and M.J. DiPirro, Phys. Rev. B, 29, 4921 (1984);ADSCrossRefGoogle Scholar
  17. 12.
    F.M. Ellis, R.B. Hallock, M.D. Miller and R.A. Guyer, Phys. Rev. Lett., 46, 1461 (1981);ADSCrossRefGoogle Scholar
  18. F.M. Ellis and R.B. Hallock, Phys. Rev. B., 29, 497 (1984).ADSCrossRefGoogle Scholar
  19. 13.
    B. Bhattacharyya and F.M. Gasparini, Phys. Rev. Lett., 49, 919 (1982);ADSCrossRefGoogle Scholar
  20. X.W. Wang and F.M. Gasparini, Phys. Rev. B, 34, 4916 (1986).ADSCrossRefGoogle Scholar
  21. 14.
    D. McQueeney, G. Agnolet and J.D. Reppy, Phys. Rev. Lett., 52, 1325 (1984).ADSCrossRefGoogle Scholar
  22. 15.
    J.P. Romagnan, J.P. Laheurte, J.C. Noiray et M. Papoular, Phys. Rev. B, 37, 7 (1988).CrossRefGoogle Scholar
  23. 16.
    F.M. Ellis, R.B. Hallock, M.D. Miller and R.A. Guyer, Phys. Rev. Lett., 46, 1461 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Jean Pierre Laheurte
    • 1
  • Jean Claude Noiray
    • 1
  • Jean Pierre Romagnan
    • 1
  1. 1.Laboratoire de Physique de la Matière Condensée (U.A. 190)Université de Nice-Sophia AntipolisNice CedexFrance

Personalised recommendations