Momentum Distributions in Liquid Helium

  • P. E. Sokol
  • W. M. Snow
Part of the NATO ASI Series book series (NSSB, volume 257)


Liquid 4He is one of the most intensively studied systems in the history of physics. The weak attractive forces between the atoms and their large zero point motion combine to stabilize the liquid phase of helium under its saturated vapor pressure even at absolute zero. The effects of the Bose statistics of the helium atoms are important in the liquid, and at a sufficiently low temperature liquid 4He undergoes a second order phase transition to a superfluid phase. The efforts over many decades to understand the superfluidity of liquid 4He have produced innovative ideas and techniques of broad significance in both theory and experiment. Today liquid helium enjoys a unique status as a model system for the study of several aspects of many body physics. Ironically, it has attained this status despite the fact that a detailed microscopic theory of the liquid does not exist. A glance at the current state of our understanding of one of the simplest properties of liquid 4He, its momentum distribution, will serve to bring this irony into focus.


Momentum Distribution Bose Condensate Impulse Approximation Condensate Fraction Superfluid Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Nozières and D. Pines, The Theory of Quantum Liquids, Volume 2, Addison-Wesley (1989), chapter 6.Google Scholar
  2. 2.
    A. Griffin, Can. J. Phys. 65, 1368 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    An overview of such measurements can be found in Momentum Distributions, edited by R. N. Silver and P. E. Sokol, Plenum Press (1989).Google Scholar
  4. 4.
    V. F. Sears, E. C. Svensson, P. Martel and A. D. B. Woods, Phys. Rev. Lett. 49, 279 (1982).ADSCrossRefGoogle Scholar
  5. 5.
    H. A. Mook, Phys. Rev. Lett. 51, 1454 (1983).ADSCrossRefGoogle Scholar
  6. 6.
    S. Ikeda and N. Watanabe, Phys. Lett. A 121, 34 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    R. S. Holt, L. M. Needham, and M. P. Paoli, Phys. Lett. A 126, 373 (1989).ADSCrossRefGoogle Scholar
  8. 8.
    M. Puoskari and A. Kallio, Phys. Rev. B 30, 152 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    E. Manousakis, V. R. Pandharipande, Q. N. Usmani, Phys. Rev. B 31, 7022 (1985);ADSCrossRefGoogle Scholar
  10. E. Manousakis and V. R. Pandharipande, ibid., 7029.Google Scholar
  11. 10.
    M. H. Kalos, M. A. Lee, P. A. Whitlock, and G. V. Chester, Phys. Rev. B 24, 115 (1981).ADSCrossRefGoogle Scholar
  12. 11.
    P. Martel, E. C. Svensson, A. D. B. Woods, V. F. Sears, and R. A. Cowley, J. Low Temp. Phys. 23, 285 (1976).ADSCrossRefGoogle Scholar
  13. 12.
    P.E. Sokol, R.N. Silver, and J.W. Clark, in ref. 3.Google Scholar
  14. 13.
    E. Manousakis, in ref. 3.Google Scholar
  15. 14.
    D.M. Ceperley, in ref. 3.Google Scholar
  16. 15.
    R. Panoff and P. Whitlock, in ref. 3.Google Scholar
  17. 16.
    J.W. Clark and M.L. Ristig, in ref. 3.Google Scholar
  18. 17.
    O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).ADSMATHCrossRefGoogle Scholar
  19. 18.
    C.N. Yang, Rev. Mod. Phys. B34, 694 (1962).ADSCrossRefGoogle Scholar
  20. 19.
    P.C. Hohenburg and P.C. Martin, Ann. Phys. (N.Y.) 34, 291 (1965).ADSCrossRefGoogle Scholar
  21. 20.
    J. Gavoret and P. Nozières, Ann. Phys. (N.Y.) 28, 349 (1964).ADSCrossRefGoogle Scholar
  22. 21.
    G. B. West, Phys. Rep. 18C, 263 (1975).ADSCrossRefGoogle Scholar
  23. 22.
    P. E. Sokol, Can. J. Phys. 65, 1393 (1987).ADSCrossRefGoogle Scholar
  24. 23.
    R. N. Silver, in Proceedings of the 11th International Workshop on Condensed Matter Theories, Oulu, Finland, 1987, Plenum Press; Rapid Communications, Physical Review B, March 1 (1988) and references therein.Google Scholar
  25. 24.
    P.E. Sokol, T.R. Sosnick, W.M. Snow, and R.N. Silver, in ref 3; P.E. Sokol, T.R. Sosnick, W.M. Snow, and R.N. Silver, to be published in Phys. Rev. B.Google Scholar
  26. 25.
    R.A. Cowley and A.D.B. Woods, Phys. Rev. Lett. 21, 787 (1968).ADSCrossRefGoogle Scholar
  27. 26.
    R.A. Cowley and A.D.B. Woods, Can. J. Phys. 49, 177 (1971).ADSCrossRefGoogle Scholar
  28. 27.
    H.A. Mook, Phys. Rev. Lett. 32, 1167 (1974).ADSCrossRefGoogle Scholar
  29. 28.
    H.A. Mook, Phys. Rev. B 37, 5806 (1988).ADSCrossRefGoogle Scholar
  30. 29.
    E.C. Svensson, V.F. Sears, A.D.B. Woods and P. Martel, Phys. Rev. B 21, 3638 (1980);ADSCrossRefGoogle Scholar
  31. V.F. Sears, E.C. Svensson, A.D.B. Woods and P. Martel, Atomic Energy of Canada Limited Report No. AECL-6779 (unpublished).Google Scholar
  32. 30.
    A.D.B. Woods and V.F. Sears, Phys. Rev. Lett. 39, 415 (1977).ADSCrossRefGoogle Scholar
  33. 31.
    F. London, Nature 141, 643 (1938).ADSCrossRefGoogle Scholar
  34. 32.
    H.A. Mook, R Scherm, and M.K. Wilkinson, Phys. Rev. A 6, 2268 (1972).ADSCrossRefGoogle Scholar
  35. 33.
    H. W. Jackson, Phys. Rev. A 10, 278 (1974).ADSCrossRefGoogle Scholar
  36. 34.
    A. Griffin, Phys. Rev. B 32, 3289 (1985).ADSCrossRefGoogle Scholar
  37. 35.
    E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, part 2, p. 108.Google Scholar
  38. 36.
    A. Griffin, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • P. E. Sokol
    • 1
  • W. M. Snow
    • 2
  1. 1.Department of PhysicsThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Intense Pulsed Neutron Source and Materials Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations