Thermal Excitations and Helium 3 Crystallization

  • S. Balibar
  • D. O. Edwards
  • F. Graner
  • E. Rolley
Part of the NATO ASI Series book series (NSSB, volume 257)


The main reason for studying the crystallization of helium is that, at low temperature, its two isotopes can be made very pure and diffusion problems in bulk phases can be neglected. Then, the dissipation which limits the growth rate takes place at the moving liquid-solid interface, and some information on the crystallization processes can be obtained. The one fact that thermal excitations are different in helium 4 and in helium 3 makes the crystallization of these two quantum systems rather different from one another. Helium 4 was studied some years ago. In helium 3, recent experiments and theoretical articles show that the growth rate is maximum at Tm = 0.32 K where the latent heat vanishes and the growth is isothermal. Below Tm, a temperature difference usually develops between the liquid and the crystal, and the growth rate is much smaller, as a consequence of the necessary flow of a large latent heat through the Kapitza resistance of the liquid-solid interface. This Kapitza resistance is smaller than previously thought, because of the good coupling between transverse modes in the (Fermi) liquid and transverse phonons in the solid. The latent heat is released on the liquid side of the interface, and the intrinsic (or isothermal) growth rate is found to be limited by the momentum exchanges during the reflection of (Fermi) quasiparticles by the crystal lattice.


Latent Heat Entropy Production Thermal Excitation Solid Helium Surface Stiffness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.Graner, S.Balibar and E.Rolley, J. Low Temp. Phys. 75, 69 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    J.Bodensohn, K.Nicolai and P.Leiderer, Z. Phys. B64, 55 (1986).CrossRefGoogle Scholar
  3. 3.
    F.Gallet, S.Balibar and E.Rolley, J. de Physique 48, 369 (1987).CrossRefGoogle Scholar
  4. 4.
    E.Rolley, S.Balibar, F.Gallet, F.Graner and C.Guthmann, Europhys. Lett. 8, 523 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    A.F.Andreev and A.Ya.Parshin, Zh. Eksp. Teor.Fiz. 75, 1511 (1978) (Soy. Phys. JETP 48, 763 (1978)).Google Scholar
  6. 6.
    B.Castaing and P.Nozières, J. de Physique 41, 701 (1980).CrossRefGoogle Scholar
  7. 7.
    R.M.Bowley and D.O.Edwards, J. de Physique 44, 723 (1983).CrossRefGoogle Scholar
  8. 8.
    A.F.Andreev and V.G.Khnizhnik, Zh. Eksp. Teor. Fiz. 83, 416 (1982) (Soy. Phys. JETP 56, 226 (1982)).Google Scholar
  9. 9.
    L.Puech, G.Bonfait and B.Castaing, J. Low Temp. Phys. 62, 315 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    K.O.Kehishev, A.Ya.Parshin and A.B. Babkin, Zh. Eksp. Teor. Fiz. 80, 716 (1981) (Soy. Phys. JETP 53, 362 (1981)).Google Scholar
  11. 11.
    G.Agnolet, Jpn. J. Appl. Phys. 26, A79 (1987).CrossRefGoogle Scholar
  12. 12.
    S.Balibar, D.O.Edwards and W.F.Saam, submitted to J. Low Temp. Phys. (march 1990).Google Scholar
  13. 13.
    E.R.Grilly, J. Low Temp. Phys. 4, 615 (1971).ADSCrossRefGoogle Scholar
  14. 14.
    F.Graner, R.M.Bowley and P.Nozières, To appear in J. Low Temp. Phys. (1990).Google Scholar
  15. 15.
    H.J.Maris and T.E.Huber, J. Low Temp. Phys. 48, 99 (1982).ADSCrossRefGoogle Scholar
  16. 16.
    L.Puech, B.Hebral, D.Thoulouze and B.Castaing, J. Physique Lettres 43, L. 809 (1982).Google Scholar
  17. 17.
    P.E.Wolf, D.O.Edwards and S.Balibar, J. Low Temp. Phys: 51, 489 (1983).ADSCrossRefGoogle Scholar
  18. 18.
    D.O.Edwards, S.Balibar and P.E.Wolf, 75th Jubilee Conf. on Helium 4, Ed. J.G.M.Armitage, World Scientific (1983) p. 70.Google Scholar
  19. 19.
    P.Nozières and M.Uwaha, J. de Physique 48, 389 (1987).CrossRefGoogle Scholar
  20. 20.
    A.C.Anderson, J.I.Connolly, O.E.Vilches and J.C.Wheatley, Phys. Rev. 147, 90 (1966).ADSCrossRefGoogle Scholar
  21. 21.
    P.R.Roach and J.B.Ketterson, Phys. Rev. Lett. 36, 736 (1976).ADSCrossRefGoogle Scholar
  22. F.Dalfovo and S.Stringari, II Nuovo Cimento 6D, 445 (1985).ADSCrossRefGoogle Scholar
  23. 22.
    J.Amrit and J.Bossy, Proc. of LT19, Physica B 165and166, 529 (1990).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • S. Balibar
    • 1
  • D. O. Edwards
    • 2
  • F. Graner
    • 1
  • E. Rolley
    • 1
  1. 1.Laboratoire de Physique Statistique de l’ENSassocié au CNRS et à l’Université P.M. CurieParis Cedex 05France
  2. 2.Department of PhysicsThe Ohio State UniversityColumbusUSA

Personalised recommendations