The Inertia of the 4He Crystal Surface and the Calculation of the Phonon Transmission

  • D. O. Edwards
  • M. S. Pettersen
  • H. Baddar
Part of the NATO ASI Series book series (NSSB, volume 257)


The temperature dependence of the surface inertia of atomically rough 4He crystals is discussed in terms of quantum kinks moving at velocities near the speed of sound in the liquid. The Wolf-Nozieres boundary conditions, which determine the transmission of high frequency phonons through the surface are derived. Neglecting the dependence on the azimuthal angle, we fit some of the published crystal shape measurements to find the surface tension, and the stiffness as a function of the angle from the c-axis. The surface stress, estimated from the temperature dependence of the surface stiffness along the melting curve, is about three times larger than the surface tension. The boundary conditions involve the surface elastic coefficients, which may be determined from the phonon transmission.


Surface Tension Surface Stress Transmission Probability Helmholtz Free Energy Surface Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Kosevich and Yu. A. Kosevich, Fiz. Nizk. Temp. 7, 809 (1981); [Sov. J. Low Temp. Phys. 7, 394 (1981)].Google Scholar
  2. 2.
    L. Puech and B. Castaing, J. Physique Lett. 43, L601 (1982).CrossRefGoogle Scholar
  3. 3.
    H. J. Maris and T. E. Huber, J. Low Temp. Phys. 48, 99 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    D. O. Edwards, S. Mukherjee and M. S. Pettersen, Phys. Rev. Lett. 64, 902 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    M. S. Pettersen and D. O. Edwards, submitted for publication in the Proceedings of LT19, March 1990.Google Scholar
  6. 6.
    T. H. Huber and H. J. Maris, Phys. Rev. Lett. 47, 1907 (1981)ADSCrossRefGoogle Scholar
  7. T. H. Huber and H. J. Maris, J. Low Temp. Phys. 48, 463 (1982).ADSCrossRefGoogle Scholar
  8. 7.
    B. Castaing, G. Bonfait and D. Thoulouze, Physica B109–110, 2093 (1982);Google Scholar
  9. L. Puech, B. Hebral, D. Thoulouze and B. Castaing, J. Physique Lettres 43, L.809 (1982).CrossRefGoogle Scholar
  10. 8.
    P. E. Wolf, D. O. Edwards and S. Balibar, J. Low Temp. Phys. 51, 489 (1983).ADSCrossRefGoogle Scholar
  11. 9.
    A. F. Andreev and A. Ya Parshin: Zh. Eksp. Teor. Fiz. 75, 1511 (1978); [Soy. Phys. JETP 48, 763 (1978)].Google Scholar
  12. 10.
    A. F. Andreev and Yu. A. Kosevich, Zh. Eksp. Teor. Fiz. 81, 1435 (1981); [Sov. Phys. JETP 54, 761 (1981)]Google Scholar
  13. Yu. A. Kosevich, Zh. Eksp. Teor. Fiz. 90, 481 (1986); [Sov. Phys. JETP 63, 278 (1986)]Google Scholar
  14. M. Yu. Kagan and Yu. A. Kosevich, Zh. Eksp. Teor. Fiz. 91, 826 (1986); [Sov. Phys. JETP 64, 487 (1986)].Google Scholar
  15. 11.
    P. Nozieres and D. E. Wolf, Z. Phys. B 70 399 (1988).ADSCrossRefGoogle Scholar
  16. 12.
    D. E. Wolf and P. Nozieres, Z. Phys. B 70, 507 (1988).ADSCrossRefGoogle Scholar
  17. 13.
    R. B. Griffiths, in: “Phase transitions in Surface Films”, ed. by J. G. Dash and J. Ruvalds, Plenum Press, New York (1980).Google Scholar
  18. 14.
    R. E. Martinez, W. M. Augustyniak and J. A. Golovchenko, Phys. Rev. Lett. 64, 1035 (1990).ADSCrossRefGoogle Scholar
  19. 15.
    D. O. Edwards and W. F. Saam, in: “Progress in Low Temperature Physics”, Vol. VIIA, ed. by D. F. Brewer, North Holland, Amsterdam (1978), p. 183Google Scholar
  20. 16.
    J. I. D. Alexander and W. C. Johnson, J. Appl. Phys. 58, 816 (1985).ADSCrossRefGoogle Scholar
  21. 17.
    L. D. Landau and I. M. Lifshitz, “Theory of Elasticity”, tr. by J. B. Sykes and W. H. Reid, Pergamon Press, London (1981).Google Scholar
  22. 18.
    R. Shuttleworth, Proc. Phys. Soc. London A63, 444 (1950).Google Scholar
  23. 19.
    A. V. Babkin, K. O. Keshishev, D. B. Kopeliovich and A. Ya. Parshin, Pis’ma Zh, Eksp. Teor. Fiz. 39, 519 (1984) [JETP Lett. 39, 633 (1984)].Google Scholar
  24. 20.
    A. V. Babkin, D. B. Kopeliovich and A. Ya. Parshin, Zh. Eksp. Teor. Fiz. 89, 2288 (1985); [Sov. Phys. JETP 62, 1322 (1985)].Google Scholar
  25. 21.
    P. E. Wolf, F. Gallet, S. Balibar, E. Rolley and P. Nozieres, J. de Physique 46, 1987 (1985)CrossRefGoogle Scholar
  26. F. Gallet, S. Balibar and E. Rolley, J. de Physique 48, 369 (1987).CrossRefGoogle Scholar
  27. 22.
    O. A. Andreeva and K. O. Keshishev, Pis’ma Zh. Eksp. Teor. Fiz. 46, 160 (1987)[JETP Lett. 46, 200 (1987)]Google Scholar
  28. A later paper, 0. A. Andreeva, K. 0. Keshishev and S. Yu. Osip’yan, Pis’ma Zh. Eksp. Teor. Fiz. 49, 661 (1989) [JETP Lett. 49, 759 (1989)], which was not available to us at the time the fit shown in Fig.3 was made, confirms the dependence of a,„ on B, but shows that ayy is a strong function of at B = 90°. We hope to present a more accurate version of the present work, including the dependence on 0, in a later publication.Google Scholar
  29. 23.
    The calculation is analogous to that for 3D orthorhombic crystals in Ref.17. In the case of the surface however we may not neglect the linear term.Google Scholar
  30. 24.
    F. Gallet, P. E. Wolf and S. Balibar, Phys. Rev. Lett. 52, 2253 (1984).ADSCrossRefGoogle Scholar
  31. 25.
    S. Balibar, D. O. Edwards and W. F. Saam, submitted to J. Low Temp. Phys., March 1990.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • D. O. Edwards
    • 1
  • M. S. Pettersen
    • 1
  • H. Baddar
    • 1
  1. 1.Physics DepartmentThe Ohio State UniversityColumbusUSA

Personalised recommendations