Vortices and the Superfluid 4He Phase Transition in Two and Three Dimensions

  • Gary A. Williams
Part of the NATO ASI Series book series (NSSB, volume 257)


The idea that thermally excited vortices might underlie the unusual properties of the superfluid 4He λ-transition was first proposed by both Onsagerl and Feynman2 in their original papers on the quantization of circulation. In Feynman’s words2: “If rotons are the smallest ring vortices... then there are states of higher energy corresponding to larger rings... As the temperature rises... then suddenly the rings of very largest length are of importance. ...The superfluid is pierced through and through with vortex line. We are describing the disorder of He I.”


Vortex Ring Vortex Core Vortex Line Vortex Pair Large Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Onsager, Nuovo Cimento Suppl. 6: 249 (1949).MathSciNetCrossRefGoogle Scholar
  2. 2.
    R.P. Feynman, in “Progress in Low Temperature Physics,” C.J. Gorter, ed., North-Holland, Amsterdam (1955), Vol. 1, p. 52.Google Scholar
  3. 3.
    P. Weichman, Phys. Rev. Lett. 61: 2969 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    P. Weichman and M.E. Fisher, Phys. Rev. 34: 7652 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    P.W. Anderson, “Basic Notions in Condensed Matter Physics,” Benjamin/ Cummings, Menlo Park (1984).Google Scholar
  6. 6.
    J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6:1181 (1973); see also A.P. Young, Phys. Rev. B 19: 1855 (1979).CrossRefGoogle Scholar
  7. 7.
    D.J. Bishop and J.D. Reppy, Phys. Rev. B 22:5171 (1980); I. Rudnick, Phys. Rev. Lett. 40:1454 (1978); G. Agnolet and J.D. Reppy, Phys. Rev. B 39: 8934 (1989).Google Scholar
  8. 8.
    F. Gallet and G.A. Williams, Phys. Rev. B 39: 4673 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    G.A. Williams, Phys. Rev. Lett. 59: 1926 (1987).ADSCrossRefGoogle Scholar
  10. 10.
    S.R. Shenoy, Phys. Rev. B 40: 5056 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    V. Kotsubo and G.A. Williams, Phys. Rev. B 33: 6106 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    H. Cho, V. Kotsubo, and G.A. Williams, Can. J. Phys. 65: 1532 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    D.J. Bishop, J.E. Berthold, J.M. Parpia and J.D. Reppy, 24: 5047 (1981).Google Scholar
  14. 14.
    B.C. Crooker, B. Hebral, E.N. Smith, Y. Takano, and J.D. Reppy, Phys. Rev. Lett. 51:666 (1983); J.D. Reppy, Physica B+C 126: 335 (1984).CrossRefGoogle Scholar
  15. 15.
    K. Shirahama, N. Wada, Y. Takano, T. Ito, and T. Watanabe, Jpn. J. Appl. Phys. 26, suppl. 26–3: 293 (1987).Google Scholar
  16. 16.
    K. Shirahama, M. Kubota, S. Ogawa, N. Wada, and T. Watanabe, Phys. Rev. Lett. 64: 1541 (1990).ADSCrossRefGoogle Scholar
  17. 17.
    N. Mulders and J.R. Beamish, Phys. Rev. Lett. 62: 438 (1989).ADSCrossRefGoogle Scholar
  18. 18.
    D. Finotello, K.A. Gillis, A. Wong, and M.H.W. Chan, Phys. Rev. Lett. 61: 1954 (1988).ADSCrossRefGoogle Scholar
  19. 19.
    M.H.W. Chan, K.I. Blum, S.Q. Murphy, G.K.S. Wong, and J.D. Reppy, Phys Rev. Lett. 61: 1950 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    V. Ambegaokav, B.I. Halperin, D.R. Nelson, and E.D. Siggia, Phys. Rev. B 21: 1806 (1980).ADSCrossRefGoogle Scholar
  21. 21.
    M. Barber, in “Phase Transitions and Critical Phenomena,” C. Domb and J. Lebowitz, eds., Academic Press, London (1983), Vol.8.Google Scholar
  22. 22.
    T. Minoguchi and Y. Nagaoka, Prog Theor. Phys. 80: 397 (1988).ADSCrossRefGoogle Scholar
  23. 23.
    J. Machta and R.A. Guyer, Phys. Rev. Lett. 60: 2054 (1988).ADSCrossRefGoogle Scholar
  24. 24.
    K. Blum, S. Murphy, M.H.W. Chan, D.D. Awschalom and J.D. Reppy, Jpn. J. Appl Phys. 26, suppl. 26–3: 275 (1987).Google Scholar
  25. 25.
    H. Cho, F. Gallet, and G.A. Williams, in “Quantum Fluids and Solids - 1989,” G. Ihas and Y. Takano, eds., AIP, New York (1989) p. 193.Google Scholar
  26. 26.
    D.F. McQueeny, Ph.D. thesis, Cornell University, 1988 (unpublished).Google Scholar
  27. 27.
    G.A. Williams, Phys. Rev. Lett. 64:978 (1990); M.H.W. Chan et al., ibid, p. 979.Google Scholar
  28. 28.
    H. Kleinert, “Gauge Fields in Condensed Matter,” World Scientific, Singapore (1990) Vol.1.Google Scholar
  29. 29.
    S. Edwards, J. Chem. Soc. Faraday Trans. II, 75: 1020 (1979).CrossRefGoogle Scholar
  30. 30.
    G. Kohring, R. Shrock, and P. Wills, Phys. Rev. Lett. 57: 1358 (1986).ADSCrossRefGoogle Scholar
  31. 31.
    Y. Li and S. Teitel, Phy_s. Rev. B 40: 9122 (1989).ADSCrossRefGoogle Scholar
  32. 32.
    W. Janke, Ph.D. thesis, Freie Universitat Berlin, 1985 (unpublished).Google Scholar
  33. 33.
    J. Epiney, Diploma thesis, ETH Zurich, 1990 (unpublished).Google Scholar
  34. 34.
    G.A. Williams, to appear in Proceedings of LT19, Physica B (1990).Google Scholar
  35. 35.
    E.C. Svensson, in “75th Jubilee Conference on Helium-4,” J. Armitage, ed., World Scientific, Singapore (1983) p. 10.Google Scholar
  36. 36.
    C.A. Jones and P.H. Roberts, J. Phys. A 15: 2599 (1982).ADSCrossRefGoogle Scholar
  37. 37.
    R.P. Feynman, Phys. Rev. 94: 262 (1954).ADSMATHCrossRefGoogle Scholar
  38. 38.
    R.J. Donnelly and P.H. Roberts, Phys. Lett. 43A: 199 (1973).CrossRefGoogle Scholar
  39. 39.
    J. Maynard, J. Heiserman, and I. Rudnick, Pys Lett. S8A: 187 (1976).Google Scholar
  40. 40.
    A.J. Chorin, to appear in Commun. Math. Phys. (1990).Google Scholar
  41. 41.
    G.A. Williams, Jpn. J. Appl. Phys. 26, suppl. 26. 3: 305 (1987).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Gary A. Williams
    • 1
  1. 1.Physics DepartmentUniversity of CaliforniaLos AngelesUSA

Personalised recommendations