Advertisement

NMR Measurements of 3 He in 3 He- 4 He Mixture Films

  • Robert B. Hallock
Part of the NATO ASI Series book series (NSSB, volume 257)

Abstract

3He atoms atop a thin film of 4He constitute a conceptually simple but remarkably rich system in which the 3He, depending on the coverage, can be studied from the extremes of a nearly non-interacting 2D Fermi gas, to a 3D interacting liquid. In such a system, the Fermi temperature depends on coverage and, for the 2D case, may he readily tuned. Several important questions may be asked of this system: (1) how does the behavior of the 3He change as the 3He coverage is increased and the interactions among the atoms increase, (2) how does the 3He interact with the 4He film which supports it, (3) for 3He coverages which approach and exceed a monolayer, how does the 3He evolve from a 2D to a 3D system, (4) are there phase transitions in the system as a function of either 3He coverage or temperature, (5) what are the dynamical properties of the 3He as a function of these parameters?

Keywords

Sound Attenuation Coverage Dependence Discrete Energy Level Rich System Mixture Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.F. Brewer, D.J. Creswell and A.L. Thompson, in Proceedings of the Twelfth International Conference on Low Temperature Physics, Kyoyo, 1970, ed. E. Kanda ( Keigaku, Tokyo, 1970 ), p. 157.Google Scholar
  2. 2.
    M.J. Dipirro and F.M. Gasparini, Phys. Rev. Lett. 44, 269 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    B.K. Bhattacharyya, M.J. Dipirro and F.M. Gaspirini, Phys. Rev. B 30, 5029 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    F.M. Ellis, R.B. Hallock, M.D. Miller and R.A. Guyer, Phys. Rev. Lett. 46, 146 (1981).ADSCrossRefGoogle Scholar
  5. J.C. Noiray, D. Sornette, J.P. Romagnan and J.P. Laheurte, Phys. Rev. Lett. 53, 2421 (1984).ADSCrossRefGoogle Scholar
  6. 5.
    J. Lekner, Philos. Mag. 22, 669 (1970).ADSCrossRefGoogle Scholar
  7. 6.
    J.M. Valles, Jr., R.M. Heinrichs and R.B. Hallock, Phys. Rev. Lett. 56, 1704 (1986).ADSCrossRefGoogle Scholar
  8. 7.
    F.M. Ellis and R.B. Hallock, Phys. Rev. B 29, 497 (1984);ADSCrossRefGoogle Scholar
  9. R.M. Heinrichs and R.B. Hallock, Proceedings of the Seventeenth International Conference on Low Temperature Physics, ed. U. Eckhern et al. ( North-Holland, Amsterdam, 1984 ), p. 59;Google Scholar
  10. R.M. Heinrichs, Ph.D. Dissertation (Univ. of Massachusetts, 1985), unpublished.Google Scholar
  11. 8.
    R.B. Hallock, Can. J. Phys. 65, 1517 (1987).ADSCrossRefGoogle Scholar
  12. 9.
    J.M.Valles, Jr., R.H. Higley, B.R. Johnson and R.B. Hallock, Phys. Rev. Lett. 60, 428 (1988).ADSCrossRefGoogle Scholar
  13. 10.
    J.M. Valles, Jr., D.T. Smith and R.B. Hallock, Phys. Rev. Lett. 54, 1528 (1985);ADSCrossRefGoogle Scholar
  14. D.T. Smith, K.M. Godshalk and R.B. Hallock, Phys. Rev. B 36, 202 (1987).ADSCrossRefGoogle Scholar
  15. 11.
    For the smallest values of τ long (τ long < 0.2 sec) we observe a slight nonlinearity.Google Scholar
  16. 12.
    R.H. Higley, D.T. Sprague and R.B. Hallock, Phys. Rev. Lett. 63, 2570 (1989).ADSCrossRefGoogle Scholar
  17. 13.
    R.H. Higley, D.T. Sprague and R.B. Hallock, Phys. Rev. B, (to be published).Google Scholar
  18. 14.
    R.H. Higley, D.T. Sprague and R.B. Hallock, Proceedings of the Nineteenth International Conference on Low Temperature Physics, ed. D. Betts et al. (in press).Google Scholar
  19. 15.
    J.L. Epstein, E. Krotscheck and M. Saarela, Phys. Rev. Lett. 64, 427 (1990).ADSCrossRefGoogle Scholar
  20. 16.
    N. Pavloff and J. Treiner (preprint); J. Treiner, private communication.Google Scholar
  21. 17.
    D.T. Sprague, N. Alikacem and R.B. Hallock (to be published).Google Scholar
  22. 18.
    A. Abragam, The Principles of Nuclear Magnetism, (Oxford Univ. Press, London, 1961 ), p. 324.Google Scholar
  23. 19.
    R.A. Guyer, this volume and R.A. Guyer, K.R. McCall and D.T. Sprague, Phys. Rev. B 40, 7417 (1989).ADSCrossRefGoogle Scholar
  24. 20.
    S.M. Haven-Sacco and A. Widom, J. Low Temp. Phys. 40, 357 (1980).ADSCrossRefGoogle Scholar
  25. 21.
    D.T. Sprague, N. Alikacem and ß..B. TTallock, Proceedings of the Ninteenth Tnternational Conference on Low Temperature Physics, ed. D. Betts et al., (postdeadline, in press)Google Scholar
  26. 22.
    The Ti values from our most recent run represented by figure 6 are generally consistent with earlier runs except for the case of the run whose data is shown in figure 5 where T 1 appears a bit longer. The echo height was the same in the Curie region for the case of d 3 = 0.1 for each of these runs; there is no error in the 3 He coverage. We don’t presently understand this quantitative discrepancy; it does not affect any of the trends of the data within a single run. In all cases in a given run the data are reproducible and heating effects are absent.Google Scholar
  27. 23.
    B.P. Cowan, J. Low Temp. Phys. 50, 135 (1983).ADSCrossRefGoogle Scholar
  28. 24.
    E. Krotscheck, Phys. Rev. B 32, 5713 (1985).ADSCrossRefGoogle Scholar
  29. 25.
    R.A. Guyer, private communication.Google Scholar
  30. 26.
    D.S. Greywall and P.A. Busch, Phys. Rev. Lett. 65, 64 (1990);ADSCrossRefGoogle Scholar
  31. C.P. Lusher, J. Saunders and B.P. Cowan, Proceedings of the Nineteenth International Conference on Low Temperature Physics, ed. D. Betts et al. (in press).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Robert B. Hallock
    • 1
  1. 1.Laboratory for Low Temperature Physics Department of Physics and AstronomyUniversity of MassachusettsAmherstUSA

Personalised recommendations