The Effect of Film Thickness and the Substrate on Superfluid 3He Film Flow

  • J. P. Harrison
  • A. Sachrajda
  • S. C. Steel
  • P. Zawadzki
Part of the NATO ASI Series book series (NSSB, volume 257)


The self-emptying beaker technique was used to study the superfluid properties of thin film liquid 3He. Superfluid film flow was observed only below the bulk transition temperature at 0.93 mK. In a separate experiment the minimum film thickness was determined as a function of 3He level in the beaker. Thus, the flow rate, or critical current density, was determined as a function of temperature and film thickness. Extrapolation allowed a determination of the critical temperature (Tc) and zero temperature critical current density Jc (0) as a function of film thickness. Tc agreed with the predicted superfluid-normal phase boundary at 2d/(T) ç a where d is the film thickness and ξ(T) is the coherence length. Jc (0) was an order of magnitude smaller than expected for dissipation by pair-breaking. When a 4He monolayer was adsorbed on the surface of the beaker, it suppressed the diffuse scattering of 3He quasiparticles at the substrate boundary, as also observed by Freeman et al. There was no measurable suppression of Tc even for films as thin as 100 nm. With or without the 4He monolayer teere was always an abrupt drop in the flow-rate when the film thinned to about 200 nm. This may be associated with the transition between the expected thick film B-like phase and thin film A-like phase.


Critical Current Density Film Flow Superfluid State Stainless Steel Beaker Super Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I.E. Dzyaloshinskii, E.M. Lifshitz and L.P. Pitaevskii, Advances in Phys. 10, 165 (1961).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    V. Ambegaokar, P.G. deGennes and D. Rainer, Phys. Rev A9, 2676 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    A.L. Fetter and S. Ullah, J. Low Temp. Phys. 70, 515 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    D.D. Osheroff, R.C. Richardson and D.M. Lee, Phys. Rev. Lett. 28, 885 (1972).ADSCrossRefGoogle Scholar
  5. 5.
    A.J. Leggett, Rev. Mod. Phys. 47, 331 (1975).ADSCrossRefGoogle Scholar
  6. 6.
    L.H. Kjaldman, J. Kurkijarvi and D. Rainer, J. Low Temp. Phys., 33, 577 (1978).ADSCrossRefGoogle Scholar
  7. 7.
    G. Barton and M.A. Moore, J. Low Temp. Phys. 21, 489 (1975).ADSCrossRefGoogle Scholar
  8. 8.
    K.W. Jacobsen and H. Smith, J. Low Temp. Phys, 67, 83 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    Y.-H. Li and T.-L. Ho, Phys. Rev B38, 2362 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    Z. Tesanovic and O.T. Valls, Phys. Rev. B34, 7610 (1986).Google Scholar
  11. 11.
    J. Hara and K. Nagai, J. Low Temp. Phys. 72, 407 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    M.T. Manninen and J.P. Pekola, J. Low Temp. Phys. 52, 497 (1983).ADSCrossRefGoogle Scholar
  13. 13.
    J.P. Pekola, J.C. Davis and R.E. Packard, J. Low Temp. Phys. 71, 141 (1988).ADSCrossRefGoogle Scholar
  14. 14.
    V. Kotsuba, K.D. Hahn and J.M. Parpia, Phys. Rev. Lett. 58, 804 (1987).ADSCrossRefGoogle Scholar
  15. 15.
    J.G. Daunt, R.F. Harris-Lowe, J.P. Harrison, A. Sachrajda, S.C. Steel, R.R. Turkington and P. Zawadzki, J. Low Temp. Phys. 70, 547 (1988).ADSCrossRefGoogle Scholar
  16. 16.
    J.C. Davis, A. Amar, J.P. Pekola and R.E. Packard, Phys. Rev. Lett. 60, 302 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    M.R. Freeman, R.S. Germain, E.V. Thunenberg and R.C. Richardson, Phys. Rev. Lett. 60, 596 (1988).ADSCrossRefGoogle Scholar
  18. 18.
    A.J. Sachrajda, R.F. Harris-Lowe, J.P. Harrison, R.R. Turkington and J.G. Daunt, Phys. Rev. Lett. 55, 1602 (1985).ADSCrossRefGoogle Scholar
  19. 19.
    G.A. Williams and R.E. Packard, Phys. Rev. Lett. 32, 587 (1974).ADSCrossRefGoogle Scholar
  20. 20.
    S.C. Steel, P. Zawadzki, J.P. Harrison and A. Sachrajda, (to be published).Google Scholar
  21. 21.
    E.S. Sabisky and C.H. Anderson, Phys. Rev A7, 790 (1973)ADSCrossRefGoogle Scholar
  22. 22.
    E. Cheng and M. Cole, Phys. Rev. B38, (1988).Google Scholar
  23. 23.
    D.F. Brewer and J.G. Daunt, Phys. Rev. 115, 843 (1959).ADSCrossRefGoogle Scholar
  24. 24.
    D. Vollhardt, K. Maki and N. Schopohl, J. Low Temp. Phys. 39, 79 (1980), H. Kleinert, J. Low Temp. Phys. 39, 451 (1980).Google Scholar
  25. 25.
    T.-L. Ho, private communication.Google Scholar
  26. 26.
    A.I. Ahonen, T. Kodama, M. Krusius, M.A. Paalanen, R.C. Richardson, W. Schoepe and Y. Takano, J. Phys. C. 9, 1665 (1976).ADSCrossRefGoogle Scholar
  27. 27.
    J.A. Sauls, private communication.Google Scholar
  28. 28.
    N. Schopohl, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. P. Harrison
    • 1
  • A. Sachrajda
    • 1
  • S. C. Steel
    • 1
  • P. Zawadzki
    • 1
  1. 1.Physics DepartmentQueen’s UniversityKingstonCanada

Personalised recommendations