Transport Properties of Very Dilute Superfluid Mixtures of 3He in 4He

  • H. Meyer
  • J. Tuttle
  • F. Zhong
Part of the NATO ASI Series book series (NSSB, volume 257)


The theory of transport properties of superfluid helium mixtures, based on the two fluid model, has been developed more than thirty years ago 1–3). One of the tests of this theory was by heat conductivity experiments 4), performed with dilute mixtures of 3He in the 4He with 1.4×10−4 ≤ X ≤ 1.3×10−2, where X is the 3He mole fraction. For the range X ≤ 10−2 the predictions become particularly simple and were confirmed by Ptukha’s experiments4). However more recent experiments with more dilute mixtures 5–7) showed the heat conductivity keff to depart from predictions for X ≤ 5×10−4. Furthermore the thermal relaxation times τ also showed an anomalous behavior 6,7). This stimulated further measurements of keff, τ and also of the thermal diffusion ratio kT* which we report in this paper.


Fluid Layer Linear Regime Heat Current Boundary Resistance Thermal Relaxation Time 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. London Superfluids Vol. II, (Dover Publications, New York, 1954), p. 190 and ff.Google Scholar
  2. 2.
    I. M. Khalatnikov and V. N. Zharkov, Zh. Eskp. Teor. Fiz. 32, 1108 (1957). [Sov. Phys. JETP,., 905, (1957)].Google Scholar
  3. 3.
    I. M. Khalatnikov, Introduction to the Theory of Superfluids (Benjamin, New York, 1965), p. 149 and ff.Google Scholar
  4. 4.
    T. P. Ptukha, Zh. Eksp. Teor. Fiz. 40, 1583 (1961) [Sov. Phys. JETP 13, 1112 (1961)].Google Scholar
  5. 5.
    M. Tanaka, A. Ikushima and K. Kawasaki, Phys. Lett. 61A, 119 (1977).ADSGoogle Scholar
  6. 6.
    M. Dingus, F. Zhong, J. Tuttle, and H. Meyer, J. Low Temp. Phys. 65, 213 (1986).ADSCrossRefGoogle Scholar
  7. 7.
    T. C. P. Chui and J. A. Lipa, Jpn. J. Appl. Phys. 26, (1987) Supplement 26–3.Google Scholar
  8. 8.
    A. Singsaas and G. Ahlers, Phys. Rev. p29, 4951 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    R. B. Behringer and H. Meyer, J. Low Temp. Phys. 1.6., 435 (1982).Google Scholar
  10. 10.
    J. M. Pfotenhauer and R.J. Donnelly, Adv. Heat Transfer 17 65 (1985).CrossRefGoogle Scholar
  11. 11.
    A. Onuki, Prog. Theor. Phys. Supp. 1, 191 (1984).Google Scholar
  12. 12.
    V. L. Ginzburg and A. A. Sobaynin, Usp. Fiz. Nauk. 120, 15 (1973) [Sov. Phys. Usp. 19, 773 (1976)].Google Scholar
  13. 13.
    D. Frank and V. Dohm, Phys. Rev. Lett. 62, 1864 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    R. Ferrell, Proc. International Low Temperature Conference LT19, Brighton Sussex 1990.Google Scholar
  15. 15.
    R. Duncan, G. Ahlers and V. Steinberg, Phys. Rev. Lett. 58, 377 (1987).ADSCrossRefGoogle Scholar
  16. R. Duncan and G. Ahlers, Phys. Rev. B (1990) To appear.Google Scholar
  17. 16.
    M. Dingus, F. Zhong and H. Meyer, J. Low Temp. Phys. 65, 185 (1986).ADSCrossRefGoogle Scholar
  18. 17.
    F. Zhong, J.Tuttle and H.Meyer, J Low Temp. Phys. 49, 9 (1990)ADSCrossRefGoogle Scholar
  19. 18.
    T. C. P. Chui and J. A. Lipa in Proc. LT17, 1984, edited by U. Eckern, A. Schmid, W. Weber and H. Wuehl ( North Holland, Amsterdam, 1984 ), p. 932.Google Scholar
  20. 19.
    J.Tuttle, F. Zhong and H. Meyer, J. Low Temp. Phys (to be published)Google Scholar
  21. 20.
    R.P. Behringer, J.Low Temp. Phys. 62, 15 (1986).CrossRefGoogle Scholar
  22. 21.
    T. C. P. Chui and J. A. Lipa, Phys. Rev. A40, 4306 (1989).ADSGoogle Scholar
  23. 22.
    R. A. Ferrell. Proc. NATO Advanced Research Workshop, Excitations in 2D and 3D Quantum Fluid, Exeter, 1990.Google Scholar
  24. 23.
    Q.Li, T.C.P. Chui and J.A. Lipa, Bull., Am. Phys. Soc. 1, 1373 (1988).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • H. Meyer
    • 1
  • J. Tuttle
    • 1
  • F. Zhong
    • 1
  1. 1.Department of PhysicsDuke UniversityDurhamUSA

Personalised recommendations