Theory of the Phonon-Roton Spectrum of Liquid 4He

  • C. E. Campbell
Part of the NATO ASI Series book series (NSSB, volume 257)


The theory of the excited states of boson fluids, and particularly liquid 4He, has been the subject of attention for nearly fifty years, beginning with Landau’s observation in 1941 that the unusual properties of liquid 4He at temperatures well below the λ point could be understood in terms of a phonon and roton spectrum of excited states.1 Subsequently Landau asserted without proof that the phonons and rotons were part of a single, continuous spectrum as a function of momentum,2 having essentially the same form as is presently widely accepted.


Excitation Spectrum Ground State Wave Function Boson System Condensate Fraction Excited State Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Landau, Zh. Eksp. Teor. Fiz. 11: 592 (1941)Google Scholar
  2. L. D. Landau, J. Phys. Moscow 5: 718 (1941).Google Scholar
  3. 2.
    L. D. Landau, J. Phys. Moscow 11: 91 (1947).Google Scholar
  4. 3.
    N. Bogoliubov, J. Phys. USSR 11:23 (1947); for further references and discussion, see references 4 and 5.Google Scholar
  5. 4.
    D. Pines, “The Many Body Problem,” W. P. Benjamin, New York (1962).MATHGoogle Scholar
  6. 5.
    P. Nozieres and D. Pines, “The Theory of Quantum Liquids, Volume II,” Addison-Wesley, New York (1990).Google Scholar
  7. 6.
    R. P. Feynman, Phys. Rev. 91: 1301 (1953).MathSciNetCrossRefADSGoogle Scholar
  8. 7.
    R. P. Feynman, Phys. Rev. 94: 262 (1954).MATHCrossRefADSGoogle Scholar
  9. 8.
    R. P. Feynman and M. Cohen, Phys. Rev. 102: 1189 (1956).MATHCrossRefADSGoogle Scholar
  10. 9.
    R. P. Feynman, Prog. Low Temp. Phys. 1: 17 (1955).CrossRefGoogle Scholar
  11. 10.
    C. E. Campbell, in: “Progress in Liquid Physics,” C. A. Croxton, ed., Wiley, New York (1978).Google Scholar
  12. 11.
    H. W. Jackson, private communication.Google Scholar
  13. 12.
    H. W. Jackson and E. Feenberg, Rev. Mod Phys. 34: 686 (1962).MATHCrossRefADSGoogle Scholar
  14. 13.
    E. Feenberg, “Theory of Quantum Fluids,” Academic Press, New York (1969).Google Scholar
  15. 14.
    C. C. Chang and C. E. Campbell, Phys. Rev B 13: 3779 (1976).CrossRefADSGoogle Scholar
  16. 15.
    E. Krotscheck, Phys. Rev. B 33: 3158 (1986).CrossRefADSGoogle Scholar
  17. 16.
    C. E. Campbell and F. J. Pinski, Nucl. Phys.A 328: 21 (1979).CrossRefGoogle Scholar
  18. 17.
    C. C. Chang and C. E. Campbell, Phys. Rev. B 15: 4238 (1977).CrossRefADSGoogle Scholar
  19. 18.
    R. A. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, and G. T. McConville, J. Chem. Phys. 70: 4330 (1979).CrossRefADSGoogle Scholar
  20. 19.
    L. R. Whitney, Ph. D. Dissertation, University of Minnesota (1981).Google Scholar
  21. 20.
    F. Family, Physica 107B: 699 (1981).Google Scholar
  22. 21.
    P. Berdahl, Phys. Rev. 10: 2378 (1981).Google Scholar
  23. 22.
    M. H. Kalos, Nucl. Phys. A 328: 153 (1979)CrossRefADSGoogle Scholar
  24. P. M. Whitlock, D. M. Ceperley, G. V. Chester and M. H. Kalos, Phys Rev. 19: 5598 (1979).CrossRefADSGoogle Scholar
  25. 23.
    E. Manousakis and V. R. Pandharipande, Phys. Rev. B 30: 5062 (1984).CrossRefADSGoogle Scholar
  26. 24.
    E. Lieb and W. Liniger, Phys. Rev. 130: 1605 (1963)MathSciNetMATHCrossRefADSGoogle Scholar
  27. E. Lieb, Phys. Rev. 130: 1616 (1963).MathSciNetMATHCrossRefADSGoogle Scholar
  28. 25.
    A. D. Jackson, A. Lande and R. A. Smith, Phys. Rept. 86: 55 (1983).CrossRefADSGoogle Scholar
  29. 26.
    A. D. Jackson, A. Lande and R. A. Smith, Phys. Rev. Lett. 54: 1469 (1985).CrossRefADSGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • C. E. Campbell
    • 1
  1. 1.School of Physics and AstronomyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations