Advertisement

Identification of Cystic Fibrosis Mutations

  • Michael Dean
  • Bernard Gerrard
  • Claudia Stewart
  • Leslie Krueger
  • Douglas Holsclaw
  • Lynne Quittell
  • Vladislov Baranov
  • Nicolai Kapronov
  • Mark Leppert
  • Jean Amos
  • Marga White
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 290)

Abstract

Using oligonucleotide primers from the sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) gene we have employed the polymerase chain reaction to amplify several coding exons. These regions have been examined from 110 patients that contain 127 chromosomes without the common CF mutation (DeltaF508). Eight additional mutations have been identified in this group, in a total of four different exons. Most of the mutations were initially identified using an assay for single-stranded conformation polymorphisms. All mutations were subsequently characterized by direct sequencing of the amplified DNA, and can be assayed by restriction enzyme digestion or allele-specific oligonucleotide hybridization.

Keywords

Cystic Fibrosis Celiac Disease Cystic Fibrosis Patient Cystic Fibrosis Gene Cystic Fibrosis Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, D.H., 1938, Cystic fibrosis of the pancreas and its relation to celiac disease, Am. J. Dis. Child, 56:344.Google Scholar
  2. Dean, M., Drumm, M.L., Stewart, C., Gerrard, B., Perry, A., Hidaka, N., Cole, J.L., Collins, F.S., and Iannuzzi, M.C., 1990, Approaches to localizing disease genes as applied to cystic fibrosis, Nucl. Acids. Res., 18:345.PubMedCrossRefGoogle Scholar
  3. Dean, M., White, M.B., Amos, J., Gerrard, B., Stewart, C., Khaw, K.-T., and Leppert, M., 1990a, Multiple mutations in highly conserved residues are found in mildly affected cystic fibrosis patients, Cell, 61:863.PubMedCrossRefGoogle Scholar
  4. di Sant’Agnese, P.A., Darling, R.C., Perea, G.A., and Shea, B.A., 1953, Abnormal electrolyte composition of sweat in cystic fibrosis of the pancreas: Clinical significance and relationship to the disease, Pediatrics, 12:549.Google Scholar
  5. di Sant’Agnese, P.A., and Davis, P.B., 1979, Cystic fibrosis in adults, Am. J. Med., 66:121.PubMedCrossRefGoogle Scholar
  6. Kerem, B.-S., Rommens, J.M., Buchanan, J.A., Markiewicz, D., Cox, T.K., Chakravarti, A., Buchwald, M., and Tsui, L.-C., 1989, Identification of the cystic fibrosis gene: Genetic analysis, Science, 245:1073.PubMedCrossRefGoogle Scholar
  7. Knowles, M., Gatzy, J., and Boucher, R., 1981, Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis, N. Eng. J. Med., 305:1489.CrossRefGoogle Scholar
  8. Orita, M., Suzuki, Y., Sekiya, T., and Hayashi, K., 1989, Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction, Genomics, 5:874.PubMedCrossRefGoogle Scholar
  9. Quinton,P.M., 1983, Chloride impermeability in cystic fibrosis, Nature, 301:4 21.Google Scholar
  10. Quinton, P.M. and Bijman, J., 1983, Higher bioelectric potentials due to decreased chloride absorption in the sweat glands of patients with cystic fibrosis, N. Engl. J. Med., 308:1185.PubMedCrossRefGoogle Scholar
  11. Riordan, J.R., Rommens, J.M., Kerem, B.-S., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J.-L., Drumm, M.L., Iannuzzi, M.C., Collins, F.S., and Tsui, L.-C., 1989, Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA, Science, 245:1066.PubMedCrossRefGoogle Scholar
  12. Rommens, J.M., Iannuzzi, M.C., Kerem, B.-S., Drumm, M.L., Melmer, G., Dean, M., Rozmahel, r., Cole, J.L., Kennedy, D., Hidaka, N., Zsiga, M., Buchwald, M., Riordan, J.R., Tsui, L.-C., and Collins, F.S., 1989, Identification of the cystic fibrosis gene: Chromosome walking and jumping, Science, 245:1059.PubMedCrossRefGoogle Scholar
  13. Rosenstein, B.J. and Langbaum, T.S., 1984, Diagnosis, in: Cystic Fibrosis, L.M. Taussig, ed., Thieme-Stratton, Inc., New York.Google Scholar
  14. Sato, K. and Sato, F., 1984, Defective beta adrenergic response of cystic fibrosis sweat glands in vivo and in vitro, J. Clin. Invest., 73:1763.PubMedCrossRefGoogle Scholar
  15. Su, C.T. and Beanblossom, B., 1989, Typical cystic fibrosis in an elderly woman, Am. J. Med., 86:701.PubMedCrossRefGoogle Scholar
  16. Welsh, M.J. and Liedtke, C.M., 1986, Chloride and potassium channels in cystic fibrosis airway epithelia, Nature, 322:467.PubMedCrossRefGoogle Scholar
  17. White, M., Amos, J., Hsu, J.M.-C., Gerrard, B., Finn, P., and Dean, M., 1990, A frameshift mutation in the cystic fibrosis gene, Nature,.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Michael Dean
    • 1
  • Bernard Gerrard
    • 1
  • Claudia Stewart
    • 1
  • Leslie Krueger
    • 2
  • Douglas Holsclaw
    • 2
  • Lynne Quittell
    • 3
  • Vladislov Baranov
    • 4
  • Nicolai Kapronov
    • 5
  • Mark Leppert
    • 6
  • Jean Amos
    • 7
  • Marga White
    • 3
  1. 1.Biological Carcinogenesis and Development ProgramProgram Resources, Inc., NCI-FCRFFrederickUSA
  2. 2.Hanneman UniversityPhiladelphiaUSA
  3. 3.Columbia University Medical CenterNew YorkUSA
  4. 4.Institute of Obstetrics and GinecologyLeningradRussia
  5. 5.Institute of PediatricsMoscowRussia
  6. 6.Howard Hughes Medical InstituteUniversity of UtahSalt Lake CityUSA
  7. 7.Center for Human GeneticsBoston UniversityBostonUSA

Personalised recommendations