The CF Gene Product as a Member of a Membrane Transporter (TM6-NBF) Super Family

  • John R. Riordan
  • Noa Alon
  • Zbyszko Grzelczak
  • Steve Dubel
  • Shi-Zhang Sun
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 290)


Since the isolation of the CF gene, efforts have been underway to determine the specific function of its protein product. Properties of the molecule inferred from its predicted primary structure (1) provided relatively strong biases as to its likely function. Hence, the presence of several sequence segments, capable of forming hydrophobic alpha helices of appropriate length to cross a lipid bilayer, suggests strongly that it is an integral membrane protein. The existence of hydrophilic domains with similarity to nucleotide-binding sequences of other membrane proteins involved in transport implies that CFTR itself could be a transporter. Of course, at this time, such a suggestion is only conjecture. To reach beyond this stage, functional studies employing antibodies to the protein and expressible cDNAs must be carried out. In the meantime, however, it is instructive to evaluate CFTR from the points of view of the known functions of related members of the superfamily and its possible relation to current models of epithelial ion transport. The need to undertake the latter considerations is emphasized by the fact that it is strongly expressed in tissues which are highly specialized to perform active salt secretion.


Super Family Hydrophilic Domain Rectal Gland Photoaffinity Labelling Cystic FibroSIS 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Riordan, J.M. Rommens, B.-S. Kerem, N. Alon, R. Rozmahel, Z. Grzelczak, J. Zielenski, S. Lok, N. Plavsic, J.-L. Chou, M.L. Drumm, M.C. Iannuzzi, F.S. Collins and L.-C. Tsui, Identification of the cystic fibrosis gene: cloning and characterization of the complementary DNA, Science, 245:1066 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    G.F.-L. Ames, Bacterial periplasmic transport systems: structure, mechanism and evolution, Ann. Rev. Biochem., 55:397 (1986).CrossRefGoogle Scholar
  3. 3.
    K. O’Hare, C. Murphy, R. Levis and G.M. Rubin, DNA sequence of the white locus of Drosophila melanogaster, J. Mol. Biol., 180:437 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    T.D. Dreesen, D.H. Johnson and S. Henikoff, The brown protein of Drosophila melanogaster is similar to the white protein and to components of active transport complexes, Mol. Cell. Biol., 8:5206 (1988).PubMedGoogle Scholar
  5. 5.
    T. Felmlee, S. Pellett and R.A. Welch, Nucleotide sequence of an Escherichia coli chromosomal hemolysin, J. Bacterid., 163:94 (1985).Google Scholar
  6. 6.
    C.A. Strathdee and R.Y-C Lo, Cloning, nucleotide sequence and characterization of genes encoding the secretion function of the Pasteurella haemolytica leukotoxin determinant, J. Bacterid., 171:916 1989).Google Scholar
  7. 7.
    L. Gilson, H.K. Mahanty and R. Kolter, Four plasmid genes are required for colicin V synthesis, export and immunity, J. Bacterid., 169:2466 (1987).Google Scholar
  8. 8.
    P. Glaster, H. Sakamoto, J. Bellalou, A. Ullmann and A. Danchin, Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis, EMJO Journal, 7:3997 (1988).Google Scholar
  9. 9.
    S.W. Stanfield, L. Ielpi, D.O. Brochta, D.R. Helinski and G.S. Ditta, The ndr A gene product of Rhizobium meliloti is required for β-(l->2) glucan production and has homology to the ATP-binding export protein Hly B, J. Bacteriol., 170:3523 (1988).PubMedGoogle Scholar
  10. G.A. Cangelosi, G. Martinetti, J.A. Leigh, C.C. Lee, C. Theines and E.W. Nester, Role of Agrobacterium temefaciens ChrA protein in export of ß-1 ,2 -glucan, J. Bacterid., 171:1609.Google Scholar
  11. 11.
    J.A. Endicott and V. Ling, The biochemistry of P-glycoprotein-mediated multidrug resistance, Ann. Rev. Biochem., 58:137 (1989).PubMedCrossRefGoogle Scholar
  12. 12.
    E. Gilson, H. Nikaido and M. Hofnung, Sequence of the mal K gene in E. coli K12, Nucleic Acids Res., 10:7449 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Frashauer and J. Beckwith, The nucleotide sequence of the gene for mal F protein, an inner membrane component of the maltose transport system of Escherichia coli, J. Biol. Chem., 259:10896 (1984).Google Scholar
  14. 14.
    R. Hengge and W. Boos, Maltose and lactose transport in Escherichia coli: Examples of two different types of concentrative transport systems, Biochim. Biophys. Acta, 737:443 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    A.W. Bell, S.D. Buckel, J.M. Groarke, J.N. Hope, D.H. Kingsley and M.A. Hermodson, The nucleotide sequences of the rbsD, rbsA and rbsC genes of Escherichia coli Kl2, J. Biol. Chem., 261:7652 (1986).PubMedGoogle Scholar
  16. 16.
    R. Landick, D.L. Oxender and G.F.-L. Ames, Bacterial amino acid transport systems, in: The Enzymes of Biological Membranes, A.N. Martonosi, ed., Plenum, New York (1984).Google Scholar
  17. 17.
    C.F. Higgins, P.D. Hoag, K. Nikaido, F. Ardeshir, G. Garcia and G.F.-L. Ames, Complete nucleotide sequence and identification of membrane components of the histidine transport operon of S. typhimurium, Nature, 298:723 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    M.J. Friedrich, L.C. De Veaux and R.J. Kadner, Nucleotide sequence of the btu CED genes involved in vitamine B12 transport in Escherichia coli and homology with components of periplasmic-binding protein dependent transport systems, J. Bacteriol., 167: 928 (1986).PubMedGoogle Scholar
  19. 19.
    B.P. Surin, H. Rosenberg and G.B. Cox, Phosphate-specific transport system of Escherichia coli: nucleotide sequence and gene-polypeptide relationships, J. Bacteriol., 161:189 (1985).PubMedGoogle Scholar
  20. 20.
    J.D. Hiles, M.P. Gallagher, D.H. Jamieson and C.F. Higgins, Molecular characterization of the oligopeptide permease of Salmonella typhimurium, J. Mol. Biol., 195:125 (1987).PubMedCrossRefGoogle Scholar
  21. 21.
    A.C. Hobson, R. Weatherwax and G.F.-L. Ames, ATP-binding sites in the membrane components of histidine permease, a periplasmic transport system, Proc. Natl. Acad. Sci. USA, 81:7333 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    C.F. Higgins, I.D. Hiles, K. Whalley and D.J. Jamieson, Nucleotide binding by membrane components of bacterial periplasmic binding protein-dependent transport systems, EMJO Journal, 4:1033 (1985).Google Scholar
  23. 23.
    C.-M. Chen, T.K. Misra, S. Silver and B.P. Rosen, Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenial resistance operon, J. Biol. Chem., 261:15030 (1986).PubMedGoogle Scholar
  24. 24.
    C.M. Hsu and B.P. Rosen, Characterization of the catalytic subunit of an anion pump, J. Biol. Chem., 264:17349 (1989).PubMedGoogle Scholar
  25. 25.
    C.-E. Karkaria, C.-M. Chen and B.P. Rosen, Mutagenesis of a nucleotide binding site of an anion-translocating ATPase, J. Biol. Chem., 265:7832 (1990).PubMedGoogle Scholar
  26. 26.
    M. Collins and G.M. Rubin, High frequency precise excision of the Drosophila feedback transposable element, Nature, 3032:259 (1983).CrossRefGoogle Scholar
  27. 27.
    J.R. Riordan and V. Ling, Genetic and biochemical characterization of multidrug resistance, Pharmacol. Ther., 28:51 (1985).PubMedCrossRefGoogle Scholar
  28. 28.
    P. Gros, J. Croop and D.E. Housman, Mammalian multidrug resistance gene: complete cDNA sequence indicates strong homology to bacterial transport proteins, Cell, 47:371 (1986).PubMedCrossRefGoogle Scholar
  29. 29.
    C. Chen, J.E. Chin, K. Eueda, D.P. Clark, I. Pastan, M.M. Gottesman and I.B. Roninson, Internal duplication and homology with bacterial transport proteins in the mdrl P-glycoprotein gene from multidrug-resistant human cells, Cell, 47:381 (1986).PubMedCrossRefGoogle Scholar
  30. C. Chen, D. Clark, K. Ueda, I Pastan, M.M. Gottesman and I.B. Roninson, Genomic organization and evolution of the human mdrl (P-glycoprotein) gene, J. Biol. Chem., 265:506.Google Scholar
  31. 31.
    A. Devault and P. Gros, Two members of the mouse mdr gene family confer multidrug resistance with overlapping but distinct drug specificities, Mol. Cell Biol., 10:1652 (1990).PubMedGoogle Scholar
  32. 32.
    A.R. Safa, C.J. Glover, M.B. Meyers, J.L. Biedler and R.L. Felsted, Vinblastine photoaffinity labelling of a high molecular weight surface membrane glycoprotein specific for multidrug-resistant cells, J. Biol. Chem., 261:6137 (1986).PubMedGoogle Scholar
  33. 33.
    A.R. Safa, Photoaffinity labelling of the multidrug-resistance related P-glycoprotein with photoactive analogs of verapamil, Proc. Natl. Acad. Sci. USA, 85:7187 (1988).PubMedCrossRefGoogle Scholar
  34. 34.
    R. Busche, B. Tümmler, J.R. Riordan and D.F. Cano-Gauci, Preparation and utility of a radioiodinated analogue of daunomycin in the study of multidrug resistance, Molec. Pharmacol., 35:414 (1987).Google Scholar
  35. 35.
    R. Busche, B. Tümmler, D.F. Cano-Gauci and J.R. Riordan, Equilibrium, kinetic and photoaffinity labelling studies of daunomycin binding to P-glycoprotein-containing membranes of multidrug-resistant Chinese hamster ovary cells, Eur. J. Biochem., 183:189 (1989).PubMedCrossRefGoogle Scholar
  36. 36.
    L. Slater, P. Sweet, M. Stupecky and S. Gupta, Cyclosporin A reverses vincristine and daunomycin resistance in acute lymphatic leukemia in vitro, J. Clin. Invest., 77:1405 (1986).PubMedCrossRefGoogle Scholar
  37. 37.
    J.P. McGrath and A. Varshavsky, The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein, Nature, 340:400 (1989).PubMedCrossRefGoogle Scholar
  38. 38.
    K. Kuchler, R.E. Sterme and J. Thorner, Saccharomyces cerevisiae STE6 gene product: a novel pathway for protein export in eukaryotic cells, EMJO Journal, 8:3973 (1989).Google Scholar
  39. 39.
    R.A. Frizzell, M. Fidd and S.G. Schultz, Sodium-coupled chloride transport by epithelial tissues, Am. J. Physiol., 236:F1 (1979).PubMedGoogle Scholar
  40. 40.
    M. Welsh, Electrolyte transport in thick ascending limb, distal convolution and collecting duct, Physiol. Rev., 67:1143 (1987).PubMedGoogle Scholar
  41. 41.
    R. Gregor, Chloride transport in thick ascending limb, distal convolution and collecting duct, Ann. Rev. Physiol., 50:111 (1988).CrossRefGoogle Scholar
  42. 42.
    G.E. Shull, A. Schwartz and J.B. Lingren, Amino acid sequence of the catalytic subunit of the (Na+ + K+) ATPase deducted from a complementary DNA, Nature, 316:691 (1985).PubMedCrossRefGoogle Scholar
  43. 43.
    P.M. Quinton, Chloride impermeability in cystic fibrosis, Nature, 301:421 (1983).PubMedCrossRefGoogle Scholar
  44. 44.
    M.R. Knowles, M.J. Stutts, A. Spock, N. Fischer, J.T. Gatzy and R.C. Boucher, Abnormal ion permeation through cystic fibrosis respiratory epithelium, Science, 221:1967 (1983).CrossRefGoogle Scholar
  45. 45.
    R.A. Schoumacher, R.L. Shoemaker, D.R. Halm, E.A. Tallant, R.W. Wallace and R.A. Frizzell, Phophorylation fails to activate chloride channels from cystic fibrosis airway cells, Nature, 330: 752 (1987).PubMedCrossRefGoogle Scholar
  46. 46.
    M. Li, J.D. McCann, C.M. Liedtke, A.C. Nairn, P. Greengard and M.J. Welsh, Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium, Nature, 331:358 (1988).PubMedCrossRefGoogle Scholar
  47. 47.
    T.C. Hwant, L. Lo, P.L. Weitlin, D.C. Gruenert, R. Huganir and W.B. Guggino, Cl-channels in CF: lack of activation by protein kinase C and cAMP-dependent protein kinase, Science, 244:1351 (1989).CrossRefGoogle Scholar
  48. 48.
    M. Li, J.D. McCann, M.P. Anderson, J.P. Clancy, C.M. Liedtke, A.C. Nairn, P. Greengard and M.J. Welsh, Regulation of chloride channels by protein kinase C in normal and cystic fibrosis airway epithelia, Science, 244:1353 (1989).PubMedCrossRefGoogle Scholar
  49. 49.
    F.H. Epstein, J.S. Stoff and P. Silva, Chloride secretion by shark rectal gland, in: Chloride Transport Coupling in Biological Membranes and Epithelia, G.A. Gerencser, ed., Elsevier (1984).Google Scholar
  50. 50.
    R. Greger, E. Schlatter and H. Gögelein, Chloride channels in the luminal membrane of the rectal gland of the dogfish (Squalus acanthias), Pflügers Arch. 409:114 (1987).PubMedCrossRefGoogle Scholar
  51. Z. Grzelczak, N. Alon, S. Dubel and J.R. Riordan, unpublished observations.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • John R. Riordan
    • 1
    • 2
  • Noa Alon
    • 1
    • 2
  • Zbyszko Grzelczak
    • 1
    • 2
  • Steve Dubel
    • 1
    • 2
  • Shi-Zhang Sun
    • 1
    • 2
  1. 1.The Hospital for Sick ChildrenTorontoCanada
  2. 2.The University of TorontoTorontoCanada

Personalised recommendations