Chloride Transport Pathways in Human Keratinocytes

  • Michela Rugolo
  • Michele De Luca
  • Teresa Mastrocola
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 290)


The transport of C1- across cell membrane plays an important role in a number of biological functions, including the maintenance of cell volume and the regulation of intracellular pH. A variety of systems capable of transporting C1- across the plasma membrane have been described in mammalian cells. They include the electroneutral C1- /anion exchange and C1-/cation cotrans-port, and the electrically conductive Cl- channels. The Cl-/ anion exchange has been shown to be involved in regulation of intracellular pH in hamster fibroblasts (L’Allemain et al., 1985) and in Vero cells (Olsnes et al., 1986). In some cell types, it has been reported that the Cl-/cation cotransport can be activated by cell shrinkage induced by hypertonic media in a process named regulatory volume increase (for a review see Hoffmann, 1986). Conversely, in human lymphocytes (Grinstein et al., 1982), Ehrlich ascites tumor cells (Hoffmann, 1986), and human fibroblasts (Rugolo et al., 1989), cell swelling induced by hypotonic shock has been clearly demonstrated to activate electrically conductive Cl- channels, in a process named regulatory volume decrease.


Cystic Fibrosis Anion Exchange Human Keratinocytes Regulatory Volume Decrease Ehrlich Ascites Tumor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bevington, P. R., 1969, Data reduction and error analysis for the physical sciences, McGraw-Hill, New York.Google Scholar
  2. Frizzell, R. A., Rechkemmer, G. and Shoemaker, R. L., 1986, Altered regulation of airway epithelial cell chloride channels in cystic fibrosis, Science, 23 3:558.CrossRefGoogle Scholar
  3. Galietta, L. J. V., Mastrocola T., De Luca M., Bondanza S., Cancedda R. and Romeo G., 1989, Uso dei cheratinociti umani in coltura come modello per lo studio elettrofisiologico del difetto molecolare della fibrosi cistica, Abstract IV Congresso Nazionale F.I.S.M.E., Milano.Google Scholar
  4. Green, H., Kehinde, O. and Thomas, J., 1979, Growth of cultured human epidermal cells into multiple epithelia suitable for grafting, Proc. Nat. Acad. Sci. USA, 76:5665.PubMedCrossRefGoogle Scholar
  5. Grinstein, S. A., Rothstein, A., Sarkadi, B. and Gelfand, E. W., 1982, Responses of lymphocytes to anisotic media: volume regulating behaviour, Am. J. Physiol., 246:C204.Google Scholar
  6. Hoffmann, E. K., 1987, Volume regulation in cultured cells, in: Current Topics in Membranes and Transport, R. Gilles, A. Kleinzeller and L. Bolis, eds., Academic Press, 30:125.Google Scholar
  7. L’Allemain, G., Paris, S. and Pouyssegur, J., 1985, Role of a Na+ dependent C1--HCO3 exchange in regulation of intracellular pH in fibroblasts, J. Biol. Chem., 260:4877.PubMedGoogle Scholar
  8. Lin, P. and Gruenstein, E., 1988, Pathways of Cl-transport in human fibroblasts, Am. J. Physiol., 255:C112.PubMedGoogle Scholar
  9. Lowry, O. H., Rosenbrough, N. J., Farr, A. L. and Randall, R. J., 1951, Protein measurements with the Folin phenol reagent, J. Biol. Chem., 193:265.PubMedGoogle Scholar
  10. Olsnes, S., Tonnessen, T. I. and Sandvig, K., 1986, pH-regulated antiport in nucleated mammalian cells, J. Cell. Biol., 102:967.PubMedCrossRefGoogle Scholar
  11. Rheinwald, J. G. and Green, H., 1975, Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinyzing colonies from single cells, Cell, 6:331.PubMedCrossRefGoogle Scholar
  12. Rugolo, M., Mastrocola, T. Flamigni, A. and Lenaz, G., 1989, Chloride transport in human fibroblasts is activated by hypotonic shock, Biochem. Biophys. Res. Comm., 160:1330.PubMedCrossRefGoogle Scholar
  13. Schoumacher, R. A., Shoemaker, R. L., Halm, D. R., Tallant, E. A., Wallace, R. W. and Frizzell, R. A., 1987, Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells, Nature, .330:752.PubMedCrossRefGoogle Scholar
  14. Welsh, M. J., 1986, An apical membrane chloride channel in human tracheal epithelium, Science, 232:1648.PubMedCrossRefGoogle Scholar
  15. Welsh, M. J. and Liedtke, C. H., 1986, Chloride and potassium channels in cystic fibrosis airway cells, Nature, 3 30:752.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Michela Rugolo
    • 1
  • Michele De Luca
    • 2
  • Teresa Mastrocola
    • 1
  1. 1.Dip. di Biologia E.S.Università di BolognaBolognaItalia
  2. 2.Ist. Nazionale per la Ricerca sul CancroGenovaItalia

Personalised recommendations