Cystic Fibrosis, the CFTR, and Rectifying Cl- Channels

  • J. J. Wine
  • D. J. Brayden
  • G. Hagiwara
  • M. E. Krouse
  • T. C. Law
  • U. J. Müller
  • C. K. Solc
  • C. L. Ward
  • J. H. Widdicombe
  • Y. Xia
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 290)


The human genetic disease cystic fibrosis is caused by a single defective gene on chromosome 7 that codes for a 1480 amino acid protein called the cystic fibrosis transmembrane conductance regulator (CFTR). The defect causes a profound reduction of C1- permeability in several tissues, which in turn impairs salt absorption and fluid secretion. A 25–80 pS, rectifying Cl-channel has been targeted as the exclusive or primary channel affected in CF. However, we have found no evidence for signifi cant activation or spontaneous activity of this channel in cell-attached patches of normal lymphoblasts or dog tracheal cells. However, in dog tracheal cells, we find lower conductance, linear C1- channels that are spontaneously active in unstimulated cells and may show increased activity in stimulated cells. Attempts to correlate the expression of mRNA for the CFTR protein in various types of cells with the presence of the rectifying C1- channel show a lack of correlation: i.e., depolarization-activated rectifying C1- channels have been found in excised, inside-out patches from all cell types that we have examined to date, but the CFTR mRNA has so far only been detected in a subset of epithelial cells.


Cystic Fibrosis Anion Channel Sweat Duct Cystic Fibro Ussing Chamber Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Riordan, J.R., J.M. Rommens, B.-S. Kerem, N. Alon, R. Roz-mahel, Z. Grzelczak, J. Zielenski, S. Lok, N. Plavsic, J.-L. Chou, M.L. Drumm, M.C. Iannuzzi, F.S. Collins, and L.-C. Tsui, 1989, Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA, Sci., 245:1066.CrossRefGoogle Scholar
  2. 2.
    Quinton, P.M., 1983, Chloride impermeability in cystic fibrosis, Nature, 301:421.PubMedCrossRefGoogle Scholar
  3. 3.
    Bijman, J., and P.M. Quinton, 1984, Influence of abnormal Cl-impermeability on sweating in cystic fibrosis, Am. J. Physiol., 247:C3.PubMedGoogle Scholar
  4. 4.
    Quinton, P.M., 1986, Missing Cl conductance in cystic fibrosis, Am. J. Physiol. 251:C649.PubMedGoogle Scholar
  5. 5.
    Bijman, J., and E. Frömter, 1986, Direct demonstration of high transepithelial chloride conductance in normal human sweat duct which is absent in cystic fibrosis, Pflug. Arch., 407:S123.CrossRefGoogle Scholar
  6. 6.
    Knowles, M.R., M.J. Stutts, A. Spock, N. Fischer, J.T. Gat-zy, and R.C. Boucher, 1983, Abnormal ion permeation through cystic fibrosis respiratory epithelium, Sci. 221:1067.CrossRefGoogle Scholar
  7. 7.
    Widdicombe, J.H., M.J. Welsh, and W.E. Finkbeiner, 1985, Cystic fibrosis decreases the apical membrane chloride permeability of monolayers cultured from cells of tracheal epithelium, Proc. Natl. Acad. Sci. USA, 82:6167.PubMedCrossRefGoogle Scholar
  8. 8.
    Willumsen, N.J., and R.C. Boucher, 1989, Shunt resistance and ion permeabilities in normal and cystic fibrosis airway epithelia, Am. J. Physiol., 256:C1054.PubMedGoogle Scholar
  9. 9.
    Sato, K., and F. Sato, 1984, Defective beta adrenergic response of cystic fibrosis sweat glands in vivo and in vitro, J. Clin. Invest., 73:1763.PubMedCrossRefGoogle Scholar
  10. 10.
    Behm, J.K., G. Hagiwara, N.J. Lewiston, P.M. Quinton, and J.J. Wine, 1986, Hyposecretion of beta-adrenergically induced sweating in CF heterozygotes, Pediatr. Res., 22:271.CrossRefGoogle Scholar
  11. 11.
    Taylor, C.J., P.S. Baxter, J. Hardcastle, and P.T. Hard-castle, 1988, Failure to induce secretion in jejunal biopsies from children with cystic fibrosis, Gut, 29:957.PubMedCrossRefGoogle Scholar
  12. 12.
    Berschneider, H.M., M.R. Knowles, R.G. Azizkhan, R. Boucher, N.A. Tobey, R.C. Orlando, and D. W. Powell, 1988, Altered intestinal chloride transport in cystic fibrosis, FASEB J., 2:2625.PubMedGoogle Scholar
  13. 13.
    Bijman, J., M. Kansen, A.H. Hoogeveen, B. Scholte, A. van der Kamp, and H. de Jonge, 1988, Electrolyte transport in normal and CF epithelia, in: Exocrine Secretion, P.Y.D.Wong and J.A. Young, eds., Hong Kong University Press, Hong Kong.Google Scholar
  14. 14.
    Boucher, R.C., C.U. Cotton, J.T. Gatzy, M.R. Knowles, and J.R. Yankaskas, 1988, Evidence for reduced Cl-and increased Na+ permeability in cystic fibrosis human primary cell cultures, J. Physiol., 405:77.PubMedGoogle Scholar
  15. 15.
    Frizzell, R.A., 1987, Cystic fibrosis: a disease of ion channels? Trends in Neurosci., 10:190.CrossRefGoogle Scholar
  16. 16.
    Frizzell, R.A., M. Field, and S.G. Schultz, 1979, Sodium-coupled chloride transport by epithelial cells, Am. J. Physiol., 236:1.Google Scholar
  17. 17.
    Welsh, M.J., 1987, Electrolyte transport by the airway epi thelia, Physiol. Rev., 67:1143.PubMedGoogle Scholar
  18. 18.
    Welsh, M.J., 1986, Single apical membrane anion channels in primary cultures of canine tracheal epithelium, Pflug. Arch., 407:S116.CrossRefGoogle Scholar
  19. 19.
    Welsh, M.J., and C.M. Liedtke 1986, Chloride and potassium channels in cystic fibrosis airway epithelia, Nature 322:467.PubMedCrossRefGoogle Scholar
  20. 20.
    Frizzell, R.A., G. Rechkemmer, and R.L. Shoemaker, 1986, Altered regulation of airway epithelial cell chloride channels in cystic fibrosis, Sci., 233:558.CrossRefGoogle Scholar
  21. 21.
    Schoumacher, R.A., R.L. Shoemaker, D.R. Halm, E.A. Tallant, R.W. Wallace, and R.A. Frizzell, 1987, Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells, Nature, 330:752.PubMedCrossRefGoogle Scholar
  22. 22.
    Li, M., J.D. McCann, C.M. Liedtke, A.C. Nairn, P. Greengard, and M.J. Welsh, 1988, Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium, Nature, 331:358.PubMedCrossRefGoogle Scholar
  23. 23.
    Hwang, T.-C., L. Lu, P.L. Zeitlin, D.C. Gruenert, R. Huganir, and W.B. Guggino, 1989, Cl-channels in CF: Lack of activation by protein kinase C and cAMP-dependent protein kinase, Sci., 244:1351.CrossRefGoogle Scholar
  24. 24.
    Li, M., J.D. McCann, M.P. Anderson, J.P. Clancy, CM. Liedtke, A.C. Nairn, P. Greengard, and M.J. Welsh, 1989, Regulation of chloride channels by protein kinase C in normal and cystic fibrosis airway epithelia, Sci., 244:1353.CrossRefGoogle Scholar
  25. 25.
    Wine, J.J., N.J. Lewiston, and G. Hagiwara, 1988, Reduced chloride permeability in sweat ducts of cystic fibrosis heterozygotes, Ped. Pulmon., suppl. 2:110.Google Scholar
  26. 26.
    Wine, J.J., 1988, The heterozygote phenotype in cystic fibrosis, in: Cellular and Molecular Basis of Cystic Fibrosis, R. G. Mastella, and P.M. Quinton, eds., San Francisco Press, San Francisco.Google Scholar
  27. 27.
    Krouse, M.E., G. Hagiwara, J. Chen, N.J. Lewiston, and J.J. Wine, 1989, Ion channels in normal human and cystic fibrosis sweat gland cells, Am. J. Physiol., 257:C129.PubMedGoogle Scholar
  28. 28.
    Brayden, D. J., A.W. Cuthbert, and CM. Lee, 1988, Human eccrine sweat gland epithelial cultures express ductal characteristics, J. Physiol., 405:657.PubMedGoogle Scholar
  29. 29.
    Chen, J.H., H. Schulman, and P. Gardner, 1989, A cAMP-regulated chloride channel in lymphocytes that is affected in cystic fibrosis, Sci., 243:657.CrossRefGoogle Scholar
  30. 30.
    Hagiwara, G., M.E. Krouse, U.J, Müller, and J.J. Wine, 1989, Is regulation of a chloride channel in lymphocytes affected in cystic fibrosis? Sci., 246:1049.CrossRefGoogle Scholar
  31. 31.
    Krouse, M.E., G. Hagiwara, U.J. Müller, C.L. Ward, T.C. Law, and J.J. Wine, 1989, Comparison of Cl channels from lymphocytes and primary sweat gland cultures, Ped. Pulmon., suppl. 4:11.Google Scholar
  32. 32.
    Hagiwara, G., M.E. Krouse, U.J. Müller, C.L. Ward, T.C. Law, and J.J. Wine, 1989, Attempts to demonstrate cAMP-dependent regulation of Cl-channels in T lymphocytes, Ped. Pulmon., suppl. 4:124.Google Scholar
  33. 33.
    Müller, U.J., M.E. Krouse, G. Hagiwara, C.L. Ward, T.C. Law, and J.J. Wine, 1989, Attempts to regulate Cl-channels in T lymphocytes with cholera toxin and PGE1, Ped. Pulmon., suppl. 4:125.Google Scholar
  34. 34.
    Woll, K.H., M.D. Leibowtiz, B. Neumcke, and B. Hille, 1987, A high-conductance anion channel in adult amphibian skeletal muscle, Pflug. Arch., 410:632.CrossRefGoogle Scholar
  35. 35.
    Worrell, R.T., A.G. Butt, W.H. Cliff, and R.A. Frizzell, 1989, A volume-sensitive chloride conductance in human colonic cell line T84, Am. J. Physiol., 256:C1111.PubMedGoogle Scholar
  36. 36.
    Dharmsathaphorn, K., J.A. McRoberts, K.G. Mandel, L.D. Tisdale, and H. Masui, 1984, A human colonic tumor cell line that maintains vectorial electrolyte transport, Am. J. Physiol., 246:G204.PubMedGoogle Scholar
  37. 37.
    Halm, D.R., G. Rechkemmer, R.A. Shoumacher, and R.A. Frizzell, 1988, Apical membrane chloride channels in a colonic cell line activated by secretory agonists, Am. J. Physiol., 254:C505.PubMedGoogle Scholar
  38. 38.
    Hayslett, J.P., H. Gogelein, K. Kunzelmann, and R. Greger, 1987, Characteristics of apical chloride channels in human colon cells (HT29), Pflug. Arch., 410:487.CrossRefGoogle Scholar
  39. 39.
    Bridges, R.J., R.T. Worrell, R.A. Frizzell, and D.J. Benos, 1989,Stilbene disulfonate blockade of colonic secretory Cl-channels in planar lipid bilayers, Am. J. Physiol., 256:C902.PubMedGoogle Scholar
  40. 40.
    Bear, C.E., 1988, Phosphorylation-activated chloride channels in human skin fibroblasts, FEBS Lett., 237:145.PubMedCrossRefGoogle Scholar
  41. 41.
    Barres, B.A., L.L.Y. Chun, and D.P. Corey, 1988, Ion channel expression by white matter glia: I. Type 2 astrocytes and oligodendrocytes, Glia, 1:10.PubMedCrossRefGoogle Scholar
  42. 42.
    Javitt, N.B., 1990, Hep G2 cells as a resource for metabolic studies: lipoprotein, cholesterol, and bile acids, FASEB J., 4:161.Google Scholar
  43. 43.
    Tabcharani, J.A., T.J. Jensen, J.R. Riordan, and J.W. Hanrahan, 1989, Bicarbonate permeability of the outwardly rectifying anion channel, J. Mem. Biol., 112:109.CrossRefGoogle Scholar
  44. 44.
    Cliff, W.H., and R.A. Frizzell, 1989, cAMP-and Ca-mediated regulation of Cl conductances in the human colonic cell line T84, Ped. Pulmon., suppl. 4:123.Google Scholar
  45. 45.
    Bijman, J., H.C. Englert, H.J. Lang, R. Greger, and E. Frömter, 1987, Characterization of human sweat duct chloride conductance by chloride channel blockers, Pflug. Arch., 408:511.CrossRefGoogle Scholar
  46. 46.
    Gray, M.A., A. Harris, L. Coleman, J.R. Greenwell, and B.E. Argent, 1989, Two types of chloride channels on duct cells cultured from human fetal pancreas, Am. J. Physiol., 257:C240.PubMedGoogle Scholar
  47. 47.
    Duszyk, M., A.S. French, and S.F.P. Man, 1990, The 20-pS chloride channel of the human airway epithelium, Biophys. J., 57:223.PubMedCrossRefGoogle Scholar
  48. 48.
    Duszyk, M., A.S. French and S.F.P. Man, 1989, Cystic fibrosis affects chloride and sodium channels in human airway epithelia, Can. J. Physiol. Pharmacol., 67:1362.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • J. J. Wine
    • 1
  • D. J. Brayden
    • 1
  • G. Hagiwara
    • 1
  • M. E. Krouse
    • 1
  • T. C. Law
    • 1
  • U. J. Müller
    • 1
  • C. K. Solc
    • 1
  • C. L. Ward
    • 1
  • J. H. Widdicombe
    • 2
  • Y. Xia
    • 1
  1. 1.Cystic Fibrosis Research LaboratoryStanford UniversityStanfordUSA
  2. 2.Cardiovascular Research InstituteUniversity of San FranciscoUSA

Personalised recommendations