Some Properties of Sodium and Chloride Channels in Respiratory Epithelia of CF- and Non-CF-Patients

  • J. Disser
  • A. Hazama
  • E. Frömter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 290)


Thus far patch clamp studies on single channel properties of respiratory epithelia have mainly focussed on Cl- channels (9, 10, 13, 15, 16, 21, 23). This has been so for two reasons: 1. The disturbance in Cl- conductance was the first transport defect to be discovered in CF epithelia (19, 22) and 2. In single channel studies on respiratory epithelia Cl- channels are found more frequently and identified and studied more easily than the low conductance, slowly switching Na+ channels. On the other hand, however, it has been known for almost ten years that sodium transport is increased in CF epithelia (12) and this alteration of sodium transport may even be more relevant as a pathogenetic factor since it may affect the transepithelial fluid balance in the bronchi more than the inability to secrete chloride (see contribution by Boucher and collaborators to this symposium). In the present paper, therefore, we shall mainly discuss our recent studies on properties of Na+ channels and shall, at the end, only briefly mention some of our recent experiments concerning the regulation of Cl- channels.


Cystic Fibrosis Single Channel Chloride Channel Respiratory Epithelium Single Channel Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boucher, R.C., Stutts, M. J., Knowles, M.R., Cantley, L., Gatzy, J.T., 1986, Na+ transport in cystic fibrosis respiratory epithelia, J. Clin. Invest., 78:1245.PubMedCrossRefGoogle Scholar
  2. 2.
    Disser, J., and Frömter, E., 1989, Single channel patch clamp-studies on sweat duct epithelium and respiratory epithelium of CF and non CF origin, in: Mukoviszidose 1989: Ergebnisse aus Grundlagenforschung und Klinik, D.Kaiser, ed., Kali-Chemie Pharma, Hannover.Google Scholar
  3. 3.
    van Driessche, W. Zeiske, W., 1985, Ionic channels in epithelial cell membranes, Physiol. Rev., 65:833.PubMedGoogle Scholar
  4. 4.
    Frings, S., Purves, R.D., Macknight, A.D.C., 1988, Singlechannel recordings from the apical membrane of the toad urinary bladder epithelial cell, J. Membrane Biol., 106:157.CrossRefGoogle Scholar
  5. 5.
    Frizzell, R.A., Rechkemmer, G., and Shoemaker, R.L., 1986, Altered regulation of airway epithelial cell chloride channels in cystic fibrosis, Science 233:558.PubMedCrossRefGoogle Scholar
  6. 6.
    Goegelein, H., and Greger, R., 1986, Na+ selective channels in the apical membrane of rabbit late proximal tubules (pars recta), Pflügers Arch., 406:198.CrossRefGoogle Scholar
  7. 7.
    Gross, P., Minuth, W.W., Kriz, W., Frömter, E., 1986, Electrical properties of renal collecting duct principal cell epithelium in tissue culture, Pflügers Arch., 406:380.PubMedCrossRefGoogle Scholar
  8. 8.
    Hamill O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflügers Arch., 391:85.PubMedCrossRefGoogle Scholar
  9. 9.
    Hamilton, K.L., and Eaton, D.C., 1985, Single-channel recordings from amiloride-sensitive epithelial sodium channel, Am. J. Physiol., 24:C200.Google Scholar
  10. 10.
    Hwang, T.C., Lu, L., Zeitlin, P.L., Gruenert, D.C., Huganir, R., and Guggino, W.B., 1989, Cl-channels in CF: lack of activation by protein kinase C and cAMP-dependent protein kinase, Science, 244:1351.PubMedCrossRefGoogle Scholar
  11. 11.
    Hayslett, J.P., Goegelein, H., Kunzelmann, K., Greger, R., 1987, Characteristics of chloride channels in human colon cells (HT29), Pflügers Arch., 410:487.PubMedCrossRefGoogle Scholar
  12. 12.
    Knowles, M.R., Stutts, M.J., Spock, A., Fischer, N., Gatzy, J.T., and Boucher, R.C., 1983, Abnormal ion permeation through cystic fibrosis respiratory epithelium, Science, 221:1067.PubMedCrossRefGoogle Scholar
  13. 13.
    Kunzelmann, K., Pavenstädt, H., Greger, R., 1989, Properties and regulation of chloride channels in cystic fibrosis and normal airway cells, Pflügers Arch., 415:172.PubMedCrossRefGoogle Scholar
  14. 14.
    Laskowski, F.H., Christine, C.W., Gitter A.H, Beyenbach, K.W., Gross, P., Frömter, E., 1990, Cation channels in the apical membrane of collecting duct principal cell epithelium in culture, Renal Physiol. Biochem., 13:70.PubMedGoogle Scholar
  15. 15.
    Li, M., McCann, J.D., Liedtke, C.M., Nairn, A.C., Greengard, P., and Welsh, M.J., 1988, Cyclic AMP dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium, Nature, 331:358.PubMedCrossRefGoogle Scholar
  16. 16.
    Li, M., McCann, J.D., Anderson, M.P., Clancy, J.P., Liedtke, C.M., Nairn, A.C., Greengard, P., and Welsh, M. J., 1989, Regulation of chloride channels by protein kinase C in normal and cystic fibrosis airway epithelia, Science, 244:1353.PubMedCrossRefGoogle Scholar
  17. 17.
    Palmer, L.G., Frindt, G., 1986, Amiloride sensitive Na+ channels from the apical membrane of the rat cortical collecting tubule, Proc. Natl. Acad. Sci. USA, 83:2767.PubMedCrossRefGoogle Scholar
  18. 18.
    Palmer, L.G., Frindt, G., 1986, Epithelial sodium chanels: characterization by using the patch clamp technique, Federation Proc., 45:2708.Google Scholar
  19. 19.
    Quinton, P.M., 1983, Chloride impermeability in cystic fibrosis, Nature, 301:421.PubMedCrossRefGoogle Scholar
  20. 20.
    Riordan, J.R., Rommens, J.M., Kerem, B.S., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J.L., Drumm, M.L., Iannuzzi, M.C., Collins, F.S., and Tsui, L.C., 1989, Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA, Science, 244:1353.CrossRefGoogle Scholar
  21. 21.
    Schoumacher, R.A., Shoemaker, R.L., Halm, D.R., Tallant, E.A., Wallace, R.W., and Frizzell, R.A., 1987, Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells, Nature, 330:752.PubMedCrossRefGoogle Scholar
  22. 22.
    Schulz, T.J., and Frömter, E., 1986, Mikropunktionsuntersuchun gen an Schweiβdrüsen von Mucoviscidosepatienten und gesunden Versuchspersonen, in: Mucoviscidose, 2. Deutsches Symposium, hrsg. von An A. Windorfer, U. Stephan, G. Thieme Verlag, Stuttgart.Google Scholar
  23. 23.
    Welsh, M.J.; and Liedtke, C.M., 1986, Chloride and potassium channels in cystic fibrosis epithelia, Nature, 322:467.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • J. Disser
    • 1
  • A. Hazama
    • 1
  • E. Frömter
    • 1
  1. 1.Zentrum der PhysiologieJohann-Wolfgang-Goethe-UniversitätFrankfurt/MainGermany

Personalised recommendations