Energy and Macronutrient Intake Regulation: Independent or Interrelated Mechanisms?

  • G. Harvey Anderson
  • Richard M. Black
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 291)


The initiation and termination of feeding are complex processes involving many signals and their integration in the central nervous system. Fluxes of metabolic fuels should logically be determinants of both the initiation and termination of feeding to meet energy needs of the organism, but the relationships of these fluxes to the regulatory centres in the central nervous system are presently undefined. Furthermore, it has become clear that the ingestion, digestion and metabolism of carbohydrate, fat and proteins provides a wide array of signals to the central nervous system and that these signals influence not only the quantity of food consumed but also the composition of the chosen foods. The purpose of this presentation is to highlight these influences and their role in food intake regulation and to provide examples of linkages between body fuel composition, central nervous system neurotransmitters and feeding behaviour.


Branch Chain Amino Acid Amino Acid Concentration High Protein Diet Food Selection High Carbohydrate Diet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, G. H., 1979, Control of protein and energy intake: Role of plasma amino acids and brain neurotransmitters. Can. J. Physiol. Pharmacol., 57:1043.PubMedCrossRefGoogle Scholar
  2. Anderson, G. H., 1988, Metabolic regulation of food intake, in: Modern Nutrition in Health and Disease, 7th ed., M. E. Shils and V. R. Young, eds., Lea and Febiger, Philadelphia, Penn.Google Scholar
  3. Anderson, G. H., and Johnston, J. L., 1983, Nutrient control of brain neurotransmitter synthesis and function. Can. J. Phvsiol. Pharmacol.. 61:271.CrossRefGoogle Scholar
  4. Anderson, G. H., Leprohon, C., Chambers, J. H., and Coscina, D. V., 1979, Intact regulation of protein intake during the development of hypothalamic or genetic obesity in rats. Phvsiol. Behav., 22:777.CrossRefGoogle Scholar
  5. Anderson, G. H., Li, E. T. S., and Glanville, N.T., 1984, Brain mechanisms and the quantitative and qualitative aspects of food intake. Brain Res. Bull., 12:167.PubMedCrossRefGoogle Scholar
  6. Anil, M. H., and Forbes, J. M., 1987, Neural control and neurosensory functions of the liver. Proc. Nutr. Soc. , 46:125.PubMedCrossRefGoogle Scholar
  7. Ashley, D. V. M., Coscina, D. V., and Anderson, G. H., 1979, Selective decrease in protein intake following drug induced brain serotonin depletion. Life Sci., 24:973.PubMedCrossRefGoogle Scholar
  8. Collier, G., Leshner, A. I., and Squibb, R. L., 1969, Dietary self-selection in active and non-active rats. Physiol. Behav., 4:79.CrossRefGoogle Scholar
  9. Campfield, L. A., Brandon, P., and Smith, F. J., 1985, On-line continuous measurement of blood glucose and meal pattern in free feeding rats: the role of glucose in meal initiation. Brain Res. Bull., 14:605.PubMedCrossRefGoogle Scholar
  10. Carlisle, H. J., and Stellar, E., 1969, Caloric regulation and food preference in normal, hyperphagic and aphagic rats. J. Comp. Phvsiol. Psvch.. 69:107.CrossRefGoogle Scholar
  11. Dyer, J. R., Greenwood, C. E., and McBurney, M. I., 1988, The effects of diet and duration of diabetes on hypermethionemia in streptozotocin-diabetic rats. Can. J. Physiol. Pharmacol., 66:95.PubMedCrossRefGoogle Scholar
  12. Durin, J. G. V. A., 1961, Appetite and the relationship between expenditure and intake of calories in man. J. Physiol., 156:294.Google Scholar
  13. Fernstrom, J. D., 1987, Food-induced changes in brain serotonin synthesis: is there a relationship to appetite for specific macronutrients Appetite, 8:163.PubMedCrossRefGoogle Scholar
  14. Fernstrom, J. D., and Wurtman, R. J., 1971a, Brain serotonin content: physiological dependence on plasma tryptophan levels. Science, 173:183.CrossRefGoogle Scholar
  15. Fernstrom, J. D., and Wurtman, R. J., 1971b, Brain serotonin content: increase following the ingestion of carbohydrate diet. Science, 174:1023.PubMedCrossRefGoogle Scholar
  16. Friedman, M. I., Tordoff, M. G., and Ramirez, I., 1986, Integrated metabolic control of food intake. Brain Res. Bull., 17:855.PubMedCrossRefGoogle Scholar
  17. Glanville, N. T., and Anderson, G. H., 1984a, Altered methionine metabolism in streptozotocin diabetic rats. Diabetolocria, 27:468.CrossRefGoogle Scholar
  18. Glanville, N. T., and Anderson, G. H., 1984b, Dietary tyrosine supplementation enhances weight gain in streptozotocin-diabetic rats. Can. J. Physiol. Pharmacol., 62:781.PubMedCrossRefGoogle Scholar
  19. Glanville, N. T., and Anderson, G. H., 1985, The effect of insulin deficiency, dietary protein intake and plasma amino acid concentrations on brain amino acid levels in rats. Can. J. Physiol. Pharmacol., 63:487.PubMedCrossRefGoogle Scholar
  20. Glick, Z., and Mayer, J., 1968, Hyperphagia caused by cerebral ventricular infusion of phlorizin. Nature London, 219:1374.PubMedCrossRefGoogle Scholar
  21. Hrboticky, N., Leiter, L. A., and Anderson, G. H., 1985, Effects of L-tryptophan on short term food intake in lean men. Nutr. Res., 5:595.CrossRefGoogle Scholar
  22. Jeanningros, R., 1982, Vagal unitary responses to intestinal amino acid infusions in the anesthetized cat: a putative signal for protein induced satiety. Physiol. Behav., 28:9.PubMedCrossRefGoogle Scholar
  23. Johnson, D. S., Li, E. T. S., Coscina, D. V., and Anderson, G. H., 1979, Different diurnal rhythms of protein and nonprotein energy intake by rats. Physiol. Behav., 21:777.CrossRefGoogle Scholar
  24. Lat, J., 1967, Self-selection of dietary components, in: Handbook of Physiology, Vol. 1, Section 6, American Physiological Society, Washington, D.C.Google Scholar
  25. Le Magnen, J., 1983, Body energy balance and food intake: a neuroendocrine regulatory mechanism. Physiol. Rev., 63:314.PubMedGoogle Scholar
  26. Le Magnen, J., and Devos, M., 1970, Metabolic correlates of the meal onset in the free food intake of rats. Physiol. Behav.. 5:805.PubMedCrossRefGoogle Scholar
  27. Leibowitz, S. F., and Shor-Posner, G., 1986, Brain serotonin and eating behavior. Appetite. 7 (Suppl):l.CrossRefGoogle Scholar
  28. Li, E. T. S., and Anderson, G. H., 1982, Meal composition influences subsequent food selection in the rat. Physiol. Behav.. 29:779.PubMedCrossRefGoogle Scholar
  29. Louis-Sylvestre, J., and Le Magnen, J., 1980, A fall in blood glucose level precedes meal onset in free feeding rats. Neurosci. Biobehav. Rev., 4 (Suppl. 1):13.PubMedCrossRefGoogle Scholar
  30. Luo, S., and Li, E. T. S., 1990, Food intake and selection pattern of rats treated with dexfenfluramine, fluoxetine and RU 24969. Brain Res. Bull., 24:729.PubMedCrossRefGoogle Scholar
  31. Luo, S., Ransom, T., and Li, E. T. S., 1990, Selective increase in carbohydrate intake by rats treated with B-hydroxy-2-(Di-N-propylamino)-tetraline or buspirone. Life Sci, 46:1643.PubMedCrossRefGoogle Scholar
  32. Mayer, J., 1953, Glucostatic mechanism in regulation of food intake. N. Engl. J. Med.. 249:13.PubMedCrossRefGoogle Scholar
  33. Mayer, J., 1980, Physiology of hunger and satiety: regulation of food intake, in: Modern Nutrition in Health and Disease R. S. Godhard and M. E. Shills. eds., Lea and Febiger, Philadelphia.Google Scholar
  34. Masiello, P., Balestreri, E., Bacciola, D., and Bergamini, E., 1987, Influence of experimental diabetes on brain levels of monoamine neurotransmitters and their precursor amino acids during tryptophan loading. Acta. Diabetol. lat., 24:43.PubMedCrossRefGoogle Scholar
  35. Mellinkoff, S. M., Franklin, M., Boyle, D., and Geipell, M., 1956, Relationship between serum amino acid concentration and fluctuation in appetite. J. Appl. Physiol., 8:535.PubMedGoogle Scholar
  36. Morley, J. E., and Levine, A. S., 1983, The central control of appetite. Lancet, 1:398.PubMedCrossRefGoogle Scholar
  37. Morris, P., Li, E. T. S., MacMillan, M., and Anderson, G. H., 1986, Effect of tryptophan on food intake and selection in rats. Physiol. Behav.Google Scholar
  38. Muller, E. E., Paneri, A., Cocchi, D., Frohman, L. A., and Mantegazza, P., 1973. Central glucoprivation: some physiological effects induced by the intraventricular administration of 2-deoxy-D-glucose. Experientia, 29:874.PubMedCrossRefGoogle Scholar
  39. Musten, B., Peace, D., and Anderson, G. H., 1974, Food intake regulation in the weanling rat: self-selection of protein and energy. J. Nutr., 104:563.PubMedGoogle Scholar
  40. Oomura, Y., 1976, Significance of glucose, insulin and free fatty acids in the hypothalamic feeding and satiety neurons, in: “Hunger: Basic Mechanism and Clinical Implications”, D. Novin, W. Wyrwicka, G. Bray, eds., Raven Press, New York.Google Scholar
  41. Osborne, T. B., and Mendel, L. B., 1918, The choice between adequate and inadequate diets, as made by rats, J. Biol. Chem., 35:19.Google Scholar
  42. Pardridge, W. M., 1984, Transport of nutrients and hormones through the blood brain barrier, Federation Proc., 43:201.Google Scholar
  43. Pardridge, W. M., and Oldendorf, W. H., 1975, Kenetic analysis of blood-brain barrier transport of amino acids, Biochim. Biophvs. Acta.. 401:128.CrossRefGoogle Scholar
  44. Pardridge, W. M., and Oldendorf, W. H., 1977, Transport of metabolic substrates through the blood-brain barrier, J. Neurochem., 28:5.PubMedCrossRefGoogle Scholar
  45. Parkinson, W., and Weingarten, H. P., 1989, A dissociative analysis of the ventromedial hypothalamic obesity syndrome. Am. J. Physiol.. in press.Google Scholar
  46. Reuterving, C.-O., and Hagg, E., 1987, Circadian eating and drinking habits in alloxan diabetic rats, Diabetes and Metabolisme (Paris), 13:99.Google Scholar
  47. Rezek, M., Havlicek, V, and Novin, D., 1975, Satiety and hunger induced by small and large duodenal loads of isotonic glucose, Am. J. Physiol., 299:545.Google Scholar
  48. Richter, C. P., Holt, L. E., and Barelare, B., 1938, Nutritional requirements for normal growth and reproduction in rats studied by the self-selection method, Am. J. Physiol., 122:734.Google Scholar
  49. Rogers, Q. R., and Leung, P. M. B., 1973, The influence of amino acids on the neuroregulation of food intake, Fed. Proc., 32:1709.PubMedGoogle Scholar
  50. Schmitt, M., 1973, Circadian rhythmicity in responses of cells in the lateral hypothalamus, Am. J. Physiol., 225:1096.PubMedGoogle Scholar
  51. Sellers, E. A., You, R. W., and Moffat, N. W., 1954, Regulation of food consumption by calorie value of the ration in rats exposed to cold. Am. J. Physiol.. 177:367.PubMedGoogle Scholar
  52. Shimazu, T., 1981, Central nervous system regulation of liver and adipose tissue metabolism. Diabetolocria, 20 (Suppl) : 343 .CrossRefGoogle Scholar
  53. Shimomura, Y., Takahashi, M., Shimizu, H., Sato, N., Uehara, Y., Negishi, M., Inukai, T., Kobayashi, I., and Kobayashi, S., 1990, Abnormal feeding behavior and insulin replacement in STZ-induced diabetic rats, Physiol. Behav., 47:731.PubMedCrossRefGoogle Scholar
  54. Smith, G. P., and Gibbs, J., 1981, Brain-gut peptides and the control of food intake, in: “Neurosecretion and Brain Peptides” J. B. Martin, S. Reichlin and K. L. Bick, eds., Raven Press, New York.Google Scholar
  55. Sokoloff, L., FitzGerald, G. G., and Kaufman, E. E., 1977, Cerebral nutrition and energy metabolism, in: “Nutrition and the Brain, Vol. 1”, R. W. Wurtman, J. J. Wurtman, eds., Raven Press, New York.Google Scholar
  56. Stricker, E. M., Rowland, N., and Sailer, C. F., 1977, Homeostasis during hypoglycemia: central control of adrenal secretion and peripheral control of feeding. Science, 196:79.PubMedCrossRefGoogle Scholar
  57. Teff, K., and Young, S. M., 1988, Effects of carbohydrate and protein administration on rat tryptophan and 5-hydroxytryptamine: differential effects on the brain, intestine, pineal, and pancreas. Can. J. Physiol. Pharmacol., 66:683.PubMedCrossRefGoogle Scholar
  58. Wayner, M. J., Ono, T., DeYoung, A., and Barone, F. C., 1975, Effects of essential amino acids on central neurons. Pharmac. Biochem. Behav., 3(Suppl.1):85.Google Scholar
  59. Weingarten, H. P., Chang, P. K., and McDonald, T. J., 1985, Comparison of the metabolic and behavioral disturbances following paraventricular-and ventromedial-hypothalamic lesions. Br. Res. Bull., 14:551.CrossRefGoogle Scholar
  60. Woodger, T. L., Sirek, A., and Anderson, G. H., 1979, Diabetes, dietary tryptophan, and protein intake regulation in weanling rats. Am.J. Physiol., 236:R307.PubMedGoogle Scholar
  61. Wurtman, J. J., Moses, P. L., and Wurtman, R. J., 1983, Prior carbohydrate consumption affects the amount of carbohydrate that rats choose to eat. J. Nutr., 113:70.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • G. Harvey Anderson
    • 1
  • Richard M. Black
    • 1
  1. 1.Department of Nutritional Sciences Faculty of MedicineUniversity of TorontoCanada

Personalised recommendations