The Blood-Brain Barrier and the Regulation of Amino Acid Uptake and Availability to Brain

  • Quentin R. Smith
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 291)


The brain requires, in addition to glucose, a continuous and balanced supply of a number of essential nutrients to sustain normal cerebral development and function. Principal among these are the amino acids which serve diverse metabolic and structural roles throughout the central nervous system.


Amino Acid Transport Neutral Amino Acid Plasma Amino Acid Amino Acid Uptake Large Neutral Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. M. Pardridge, Brain metabolism: a perspective from the blood-brain barrier, Physiol. Rev. 63:1481 (1983).Google Scholar
  2. 2.
    C. J. Pycock and P. V. Taberner, Central Neurotransmitter Turnover,University Park Press, Baltimore (1981).Google Scholar
  3. 3.
    W. C. Rose, Amino acid requirements of man, Fed. Proc. 8:546 (1949).Google Scholar
  4. 4.
    A. E. Harper and J. K. Tews, Nutritional and metabolic control of brain amino acid concentrations, in: Amino Acid Availability and Brain Function in Health and Disease, G. Huether, ed., Springer-Verlag, Berlin, pp. 3–12 (1988).CrossRefGoogle Scholar
  5. 5.
    J. D. Fernstrom and D. V. Faller, Neutral amino acids in the brain: changes in response to food ingestion, J. Neurochem. 30:1531 (1978).PubMedCrossRefGoogle Scholar
  6. 6.
    J. K. Tews, J. Greenwood, 0. E. Pratt, and A. E. Harper, Valine entry into rat brain after diet-induced changes in plasma amino acids, Am. J. Physiol. 252:R78 (1987).PubMedGoogle Scholar
  7. 7.
    J. D. Fernstrom, Role of precursor availability in control of monoamine biosynthesis in brain, Physiol. Rev. 63:484 (1983).PubMedGoogle Scholar
  8. 8.
    I. N. Acworth, M. J. During, and R. J. Wurtman, Processes that couple amino acid availability to neurotransmitter synthesis and release, in: Amino Acid Availability and Brain Function in Health and Disease, G. Huether, ed., Springer-Verlag, Berlin, pp. 117–136 (1988).CrossRefGoogle Scholar
  9. 9.
    J. C. Scwartz, C. Lampart, and C. Rose, Histamine formation in rat brain in vivo: effects of histidine loads, J. Neurochem. 19:801 (1972).CrossRefGoogle Scholar
  10. 10.
    R. A. Rubin, L. A. Ordonez, and R. J. Wurtman, Physiological dependence of brain methionine and S-adenosylmethionine concentrations on serum amino acid patterns, J. Neurochem. 23:227 (1974).PubMedCrossRefGoogle Scholar
  11. 11.
    S. N. Young, The significance of tryptophan, phenylalanine, tyrosine and their metabolites in the nervous system, in: Handbook of Neurochemistry, Vol. 3, Metabolism in the Nervous System, A. Lajtha, ed., Second Edition, Plenum, New York, pp. 559–581 (1983).Google Scholar
  12. 12.
    M. J. During, M. P. Heyes, A. Freese, S, P. Markey, J. B. Martin, and H. Roth, Quinolinic acid concentrations in striatal extracellular fluid reach potentially neurotoxic levels following systemic L-tryptophan loading, Brain Res. 476:384 (1989).PubMedCrossRefGoogle Scholar
  13. 13.
    F. Moroni, P. Russi, G. Lombardi, M. Beni, and V. Carla, Presence of kynurenic acid in the mammalian brain, J. Neurochem. 51: 177 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    J. H. James, J. Escourrou, J. E. Fischer, Blood-brain neutral amino acid transport activity is increased after portacaval anastomosis, Science 200:1395 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    A. M. Mans, M. R. DeJoseph, D. W. Davis, and R. A. Hawkins, Regional amino acid transport into brain during diabetes: effect of plasma amino acids, Am. J. Physiol. 253:E575 (1987).PubMedGoogle Scholar
  16. 16.
    C. M. McKean, D. E. Boggs, and N. A. Peterson, The influence of high phenylalanine and tyrosine on the concentrations of essential amino acids in brain, J. Neurochem. 15:235 (1968).PubMedCrossRefGoogle Scholar
  17. 17.
    F. A. Hommes, Aminoacidemias and brain dysfunction, in: Handbook of Neurochemistry, Vol. 10, Pathological Neurochemistry, A. Lajtha, ed., Second Edition, Plenum, New York, pp. 15–41 (1983).Google Scholar
  18. 18.
    C. B. Smith, G. E. Deibler, N. Eng, K. Schmidt, and L. Sokoloff, Measurement of local cerebral protein synthesis in vivo: influence of recycling of amino acids derived from protein, Proc. Natl. Acad. Sci. USA 85: 9341 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Kirikae, M. Diksic, and Y. L. Yamamoto, The transfer coefficients for L-valine and the rate of incorporation of L-[1–14C]valine into proteins in normal adult rat brain, J. Cereb. Blood Flow Metab. 8:598 (1988).PubMedCrossRefGoogle Scholar
  20. 20.
    R. A. Hawkins, S. C. Huang, J. R. Barrio, R. E. Keen, D. Feng, J. C. Mazziotta, and M. E. Phelps, Estimation of local cerebral protein synthesis rates with L-[1–14C]leucine and PET: methods, model, and results in animals and humans, J. Cereb. Blood Flow Metab. 9: 446 (1989).PubMedCrossRefGoogle Scholar
  21. 21.
    J. D. Fenstermacher and S. I. Rapoport. Blood-brain barrier, in: Handbook of Physiology: The Cardiovascular System IV, S. R. Greger, ed., American Physiological Society, Bethesda, pp. 969– 1000 (1984).Google Scholar
  22. 22.
    P. M. Gross, N. M. Sposio, S. E. Pettersen, and J. D. Fenstermacher,Differences in function and structure of the capillary endothelium in gray matter, white matter and a circumventricular organ of rat brain, Blood Vessels 23:261 (1986).PubMedGoogle Scholar
  23. 23.
    M. M. Brightman and T. S. Reese, Junctions between intimately apposed cell membranes in the vertebrate brain, J. Cell Biol. 40:648 (1969).PubMedCrossRefGoogle Scholar
  24. 24.
    C. Crone and S. P. Olesen, Electrical resistance of brain microvascular endothelium, Brain Res. 241:49 (1982).PubMedCrossRefGoogle Scholar
  25. 25.
    Q. R. Smith and S. I. Rapoport, Cerebrovascular permeability coefficients to sodium, potassium and chloride, J. Neurochem. 46:1732 (1986).PubMedCrossRefGoogle Scholar
  26. 26.
    K. Ohno, K. D. Pettigrew, and S. I. Rapoport, Lower limits of cerebrovascular permeability to nonelectrolytes in the conscious rat, Am. J. Physiol. 235:H299 (1978).PubMedGoogle Scholar
  27. 27.
    W. M. Pardridge and W. H. Oldendorf, Transport of metabolic substrates through the blood-brain barrier, J. Neurochem. 28:5 (1977).PubMedCrossRefGoogle Scholar
  28. 28.
    W. H. Oldendorf, Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection, Am. J. Physiol. 221:1629 (1971).PubMedGoogle Scholar
  29. 29.
    W. H. Oldendorf and J. Szabo, Amino acid assignment to one of three blood-brain barrier amino acid carriers, Am. J. Physiol. 230:94 (1976).PubMedGoogle Scholar
  30. 30.
    R. A. Hawkins, A. M. Mans, and J. F. Biebuyck, Amino acid supply to individual cerebral structures in awake and anesthetized rats, Am. J. Physiol. 242:E1 (1982).PubMedGoogle Scholar
  31. 31.
    Y. Takasato, S. I. Rapoport, and Q. R. Smith, An in situ brain perfusion technique to study cerebrovascular transport in the rat, Am. J. Physiol. 24 7:H484 (1984).Google Scholar
  32. 32.
    Q. R. Smith, Y. Takasato, and S. I. Rapoport, Kinetic analysis of L-leucine transport across the blood-brain barrier, Brain Res. 311:167 (1984).PubMedCrossRefGoogle Scholar
  33. 33.
    J. Greenwood, A.S. Hazell, and O. E. Pratt, The transport of leucine and aminocyclopentanecarboxylate across the intact, energy-depleted rat blood-brain barrier, J. Cereb. Blood Flow Metab. 9:226 (1989).PubMedCrossRefGoogle Scholar
  34. 34.
    A. L. Betz and G. W. Goldstein, Polarity of the blood-brain barrier: neutral amino acid transport into isolated brain capillaries, Science 202:225 (1978).PubMedCrossRefGoogle Scholar
  35. 35.
    P. A. Cancilla and L. E. DeBault, Neutral amino acid transport properties of cerebral endothelial cells in vitro, J. Neuropath. and Exp. Neurol. 42:191 (1983).CrossRefGoogle Scholar
  36. 36.
    K. L. Audus and R. T. Borchardt, Characteristics of the large neutral amino acid transport system of bovine brain microvessel endothelial cell layers, J. Neurochem. 47:484 (1986).PubMedCrossRefGoogle Scholar
  37. 37.
    Q. R. Smith, S. Momma, M. Aoyagi, and S. I. Rapoport, Kinetics of neutral amino acid transport across the blood-brain barrier, J. Neurochem. 49:1651 (1987).PubMedCrossRefGoogle Scholar
  38. 38.
    A. Tovar, J. K. Tews, N. Torres, and A. E. Harper, Some characteristics of threonine transport across the blood-brain barrier of the rat, J. Neurochem. 51:1285 (1988).PubMedCrossRefGoogle Scholar
  39. 39.
    S. Momma, M. Aoyagi, S. I. Rapoport, and Q. R. Smith. Phenylalanine transport across the blood-brain barrier as studied with the in situ brain perfusion technique, J. Neurochem. 48:1291 (1987).PubMedCrossRefGoogle Scholar
  40. 40.
    D. L. Oxender and H. N. Christensen, Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell, J. Biol. Chem. 238:3686 (1963).PubMedGoogle Scholar
  41. 41.
    M. A. Shotwell, M. S. Kilberg, and D. L. Oxender, The regulation of neutral amino acid transport in mammalian cells, Biochim. Biophys. Acta 737:267 (1983).PubMedGoogle Scholar
  42. 42.
    H. N. Christensen, Role of amino acid transport and countertransport in nutrition and metabolism, Physiol. Rev. 70:43 (1990).PubMedGoogle Scholar
  43. 43.
    L. A. Wade and R. Katzman, Synthetic amino acids and the nature of L-dopa transport at the blood-brain barrier, J. Neurochem. 25:837 (1975).PubMedCrossRefGoogle Scholar
  44. 44.
    C. Cangiano, P. Cardelli-Cangiano, J. H. James, F. Rossi-Fanelli, M. A. Patriz, K. A. Brackett, R. Strom, and J. E. Fischer, Brain microvessels take up large neutral amino acids in exchange for glutamine, J. Biol. Chem. 258:8949 (1983).PubMedGoogle Scholar
  45. 45.
    M. Aoyagi, B. W. Agranoff, L. C. Washburn, and Q, R. Smith, Blood-brain barrier transport of 1-aminocyclcohexanecarboxylic acid, a nonmeta-bolizable amino acid for in vivo studies of brain transport, J. Neurochem. 50:1220 (1988).PubMedCrossRefGoogle Scholar
  46. 46.
    H. N. Christensen, On the development of amino acid transport systems,Fed. Proc. 32:19 (1973).PubMedGoogle Scholar
  47. 47.
    J. Lerner and D. L. Larimore, Comparative aspects of the apparent Michaelis constant for neutral amino acid transport in several animal tissues, Comp. Biochem. Physiol. 84B:235 (1986).Google Scholar
  48. 48.
    K. M. Hargreaves and W. M. Pardridge, Neutral amino acid transport at the human blood-brain barrier, J. Biol. Chem. 263:19392 (1988).PubMedGoogle Scholar
  49. 49.
    M. A. Shotwell, P. M. Mattes, D. W. Jayme, and D. L. Oxender, Regulation of amino acid transport system L in Chinese hamster ovary cells, J. Biol. Chem. 257:2974 (1982).PubMedGoogle Scholar
  50. 50.
    D. T. Vistica, Cellular pharmacokinetics of the phenylalanine mustards, Pharmac. Ther. 22:379 (1983).CrossRefGoogle Scholar
  51. 51.
    L. Weissbach, M. E. Handlogten, H. N.Christensen, and M.S. Kilberg, Evidence for two Na-independent neutral amino acid transport systems in primary cultures of rat hepatocytes, J. Biol. Chem. 257: 12006 (1982).PubMedGoogle Scholar
  52. 52.
    H. Weiler-Guttler, H. Zinke, B. Mockel, A. Frey, and H. G. Gassen, cDNA cloning and sequence analysis of the glucose transporter from porcine blood-brain barrier, Biol. Chem. Hoppe-Seyler 370:467 (1989).PubMedCrossRefGoogle Scholar
  53. 53.
    Q. R. Smith, Y. Takasato, D. J. Sweeney, and S. I. Rapoport, Regional cerebrovascular transport of leucine as measured by the in situ brain perfusion technique, J. Cereb. Blood Flow Metab. 5:300 (1985).PubMedCrossRefGoogle Scholar
  54. 54.
    L. B. Yunger and R. D. Cramer, Measurement and correlation of partition coefficients of polar amino acids, Mol. Pharmacol. 20:602 (1981).PubMedGoogle Scholar
  55. 55.
    I. Tayarani, J. M. Lefauconnier, F. Roux, and J. M. Bourre, Evidence for an alanine, serine, and cysteine system of transport in isolated brain capillaries, J. Cereb. Blood Flow Metab. 7:585 (1987).PubMedCrossRefGoogle Scholar
  56. 56.
    G. Banos, P. M. Daniel, S. R. Moorhouse, and O. E. Pratt, The influx of amino acids into the brain of the rat in vivo: the essential compared with some nonessential amino acids, Proc. R. Soc. Land. B. 183:59 (1973).CrossRefGoogle Scholar
  57. 57.
    G. Banos, P. M. Daniel, S. R. Moorhouse, and 0. E. Pratt, The require-of the brain for some amino acids, J. Physiol. (Lond.) 246:539 (1975).Google Scholar
  58. 58.
    H. Sershen and A. Lajtha, Inhibition patterns by analogs indicates the presence of ten or more transport systems for amino acids in brain cells, J. Neurochem. 32:719 (1979).PubMedCrossRefGoogle Scholar
  59. 59.
    L. A. Wade and H. M. Brady, Cysteine and cystine transport at the blood-brain barrier, J. Neurochem. 37:730 (1981).PubMedCrossRefGoogle Scholar
  60. 60.
    R. G. Blasberg, J. D. Fenstermacher, and C. S. Patlak, Transport of alpha-aminoisobutyric acid across brain capillary and cellular membranes, J. Cereb. Blood Flow Metab. 3:8 (1983).PubMedCrossRefGoogle Scholar
  61. 61.
    T. Nagashima, J. M. Lefauconnier, and Q. R. Smith, Developmental changes in neutral amino acid transport across the blood-brain barrier, J. Cereb. Blood Flow Metab. 7:S501 (1987).Google Scholar
  62. 62.
    C. Cangiano, P. Cardelli-Cangiano, F. Ceci, A. Fiori, M. Mulieri, M. Muscaritoli, C. Barberini, R. Strom, and R. Fanelli, Uptake of amino acids by brain microvessels isolated from rats with experimental chronic renal failure, J. Neurochem. 51:1675 (1988).PubMedCrossRefGoogle Scholar
  63. 63.
    G. Banos, P. M. Daniel, and 0. E. Pratt, Saturation of a shared mechanism which transports L-arginine and L-lysine into the brain of the living rat. J. Physiol. (Lond.) 236:29 (1974).Google Scholar
  64. 64.
    M. F. White, The transport of cationic amino acids across the plasma membrane of mammalian cells, Biochim. Biophys. Acta 822:355 (1985).PubMedGoogle Scholar
  65. 65.
    W. H. Oldendorf, P. D. Crane, L. D. Braun, E. A. Gosschalk, J. D. Diamond, and M. A. Hill, pH dependence of histidine affinity for blood-brain barrier carrier transport systems for neutral and cationic amino acids, J. Neurochem. 50:857 (1988).PubMedCrossRefGoogle Scholar
  66. 66.
    A. M. Mans, J. F. Biebuyck, K. Shelly, and R. A. Hawkins, Regional blood-brain barrier permeability to amino acids after portacaval anastomosis, J. Neurochem. 38:705 (1982).PubMedCrossRefGoogle Scholar
  67. 67.
    H. Davson, M. N. Lipovac, J. B. Mackic, J. E. Preston, M. B. Segal, G. Tang, and B. V. Zlokovic, Kinetics of L-glutamic acid uptake by the luminal side of the blood-brain barrier studied using an in situ perfused brain of the anesthetized guinea pig, J. Physiol. (Lond.) 423:36P (1990).Google Scholar
  68. 68.
    W. M. Pardridge, Regulation of amino acid availability to brain: Selective control mechanisms for glutamate, in: Glutamic Acid: Advances in Biochemistry and Physiology, L. J. Filer, Jr., ed., Raven Press, New York, pp. 125–137 (1979).Google Scholar
  69. 69.
    L. R. Drewes, W. P. Conway, and D. D. Gilboe, Net amino acid transport between plasma and erythrocytes and perfused dog brain, Am. J. Physiol. 233:E320 (1977).PubMedGoogle Scholar
  70. 70.
    J. M. Pell and E. N. Bergman, Cerebral metabolism of amino acids and glucose in fed and fasted sheep, Am. J. Physiol. 244:E282 (1983).PubMedGoogle Scholar
  71. 71.
    M. T. Price, M. E. Pusateri, S. E. Crow, S. Buchsbaum, J. W. Olney, and O. H. Lowry, Uptake of exogenous aspartate into circumven-tricular organs but not other regions of adult mouse brain, J. Neurochem. 42: 740 (1984).PubMedCrossRefGoogle Scholar
  72. 72.
    P. M. Daniel, 0. E. Pratt, and P. A. Wilson, The transport of leucine into the brain of the rat in vivo: saturable and nonsaturable components of influx, Proc. Roy. Soc. (Lond.) B. 196:333 (1977).CrossRefGoogle Scholar
  73. 73.
    L. P. Miller, W. M. Pardridge, L. D. Braun, and W. H. Oldendorf, Kinetic constants for blood-brain barrier amino acid transport in conscious rats, J. Neurochem. 45:1427 (1985).PubMedCrossRefGoogle Scholar
  74. 74.
    R. A. Klein, M. J. Moore, and M. W. Smith, Selective diffusion of neutral amino acids across lipid bilayers, Biochim. Biophys. Acta 233:420 (1971).PubMedCrossRefGoogle Scholar
  75. 75.
    H. N. Christensen, Distinguishing amino acid transport systems of a given cell or tissue, Methods of Enzymology 173:576 (1989).CrossRefGoogle Scholar
  76. 76.
    M. Aoyagi, Y. Takada, M. Matocha, S. I. Rapoport, and Q. R. Smith, Glucose transport across the blood-brain barrier: a kinetic analysis using the in situ brain perfusion technique. J. Neuro-chem. Submitted (1990).Google Scholar
  77. 77.
    J. E. Preston, M. B. Segal, G. J. Walley, and B. V. Zlokovic, Neutral amino acid uptake by the isolated perfused sheep choroid plexus, J. Physiol. (Lond.) 408:31 (1989).Google Scholar
  78. 78.
    E. M. Wright, Active transport of glycine glycine across the frog arachnoid membrane, Brain Res. 76:354 (1974).PubMedCrossRefGoogle Scholar
  79. 78.
    E. M. Wright, G. J. Nogueira, and E. Levin, Role of the pia mater in the transfer of substances in and out of the cerebrospinal fluid, Exp. Brain Res. 13:294 (1971).Google Scholar
  80. 80.
    K. C. Wadhwani, Q. R. Smith, and S. I. Rapoport, Facilitated transport of L-phenylalanine across blood-nerve barrier of rat peripheral nerve, Am. J. Physiol. 258:R1436 (1990).PubMedGoogle Scholar
  81. 81.
    N. J. Abbott, J. Hart, L. Rogac, M. Taylor, and B. V. Zlokovic, Amino acid transport by the glial blood-brain barrier of the anesthetized dogfish, J. Physiol. (Lond.) 407:25P (1988).Google Scholar
  82. 82.
    O. E. Pratt, Transport inhibition in the pathology of phenylketonuria and other inherited metabolic diseases, J. Inherited Metabol. Dis. 5:75 (1982).CrossRefGoogle Scholar
  83. 83.
    J. D. Fernstrom and R. J. Wurtman, Brain serotonin content: physiological regulation by plasma neutral amino acids, Science 178: 414 (1972).PubMedCrossRefGoogle Scholar
  84. 84.
    J. C. LaManna and S. I. Harik, Regional studies of blood-brain barrier transport of glucose and leucine in awake and anesthetized rats, J. Cereb. Blood Flow Metab. 6:717 (1986).PubMedCrossRefGoogle Scholar
  85. 85.
    P. Cardelli-Cangiano, C. Cangiano, J. H. James, B. Jeppsson, W. Brenner, and J. E. Fischer, Uptake of amino acids by brain microvessels isolated from rats after portacaval anastomosis, J. Neurochem. 36:627 (1981).PubMedCrossRefGoogle Scholar
  86. 86.
    T. Jonung, P. Rigotti, J. H. James, K. Brackett, and J. E. Fischer, Effect of hyperammonemia and methionine sulfoxime on the kinetic parameters of blood-brain transport of leucine and phenylalanine, J. Neurochem. 45: 308 (1985).PubMedCrossRefGoogle Scholar
  87. 87.
    P. Rigotti, T. Jonung, J. C. Peters, J. H. James, and J. E. Fischer, Methionine sulfoxime prevents the accumulation of large neutral amino acids in brain of portacaval-shunted rats, J. Neurochem. 44:929 (1985).PubMedCrossRefGoogle Scholar
  88. 88.
    A. M. Mans, J. F. Biebuyck, and R. A. Hawkins, Ammonia selectively stimulates neutral amino acid transport across blood-brain barrier, Am. J. Physiol. 245:C74 (1983).PubMedGoogle Scholar
  89. 89.
    A. L. McCall, W. R. Millington, and R. J. Wurtman, Metabolic fuel and amino acid transport into the brain in experimental diabetes mellitus, Proc. Natl. Acad. Sci. USA 79:5406 (1982).PubMedCrossRefGoogle Scholar
  90. 90.
    J. T. Brosnan, R. G. P. Forsey, M. E. Brosnan, Uptake of tyrosine and leucine in vivo by brain of diabetic and control rats, Am. J. Physiol. 247:C450 (1984).PubMedGoogle Scholar
  91. 91.
    C. A. Fenerty and W. E. Lindup, Brain uptake of L-tryptophan and diazepam: the role of plasma protein binding, J. Neurochem. 53:416 (1989).PubMedCrossRefGoogle Scholar
  92. 92.
    Q. R. Smith, S. Fukui, P. J. Robinson, and S. I. Rapoport, Influence of cerebral blood flow on tryptophan uptake into brain, in: Amino Acids: Chemistry, Biology and Medicine, G. Lubec and G. A. Rosenthal, ed., ESCOM, Amsterdam, pp. 364–369 (1990).Google Scholar
  93. 93.
    T. L. Perry, S. Hansen, J. Kennedy, CSF amino acids and plasma-CSF amino acid ratios in adults, J. Neurochem. 24:587 (1975).PubMedCrossRefGoogle Scholar
  94. 94.
    P. H. Hutson, G. S. Sarna, B. D. Kantamaneni, and G. Curzon, Monitoring the effect of a tryptophan load on brain indole metabolism in freely moving rats by simultaneous cerebrospinal fluid sampling and brain dialysis, J. Neurochem. 44:1266 (1985).PubMedCrossRefGoogle Scholar
  95. 95.
    H. Davson, D. J. Begley, D. G. Chain, F. O. Briggs, and M. T. Shepherd, Steady-state distribution of cycloleucine and alpha-aminoisobutyric acid between plasma and cerebrospinal fluid, Exp. Neurol. 91:163 (1986).PubMedCrossRefGoogle Scholar
  96. 96.
    P. Brust, Changes in regional blood-brain transfer of L-leucine elicited by arginine-vasopressin, J. Neurochem. 46:534 (1986).PubMedCrossRefGoogle Scholar
  97. 97.
    P. Brust and J. Zicha, Kinetics of regional blood-brain barrier transport of L-leucine in Brattleboro rats, Biomed. Biochim. Acta 12:1013 (1988).Google Scholar
  98. 98.
    T. Eriksson and A. Carlsson, Beta-adrenergic control of amino acid uptake of large neutral amino acids, Life Sci. 42:1583 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Quentin R. Smith
    • 1
  1. 1.Laboratory of Neurosciences, National Institute on AgingNational Institutes of HealthBethesdaUSA

Personalised recommendations