Skip to main content

The Blood-Brain Barrier and the Regulation of Amino Acid Uptake and Availability to Brain

  • Chapter
Fuel Homeostasis and the Nervous System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 291))

Abstract

The brain requires, in addition to glucose, a continuous and balanced supply of a number of essential nutrients to sustain normal cerebral development and function. Principal among these are the amino acids which serve diverse metabolic and structural roles throughout the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. M. Pardridge, Brain metabolism: a perspective from the blood-brain barrier, Physiol. Rev. 63:1481 (1983).

    CAS  Google Scholar 

  2. C. J. Pycock and P. V. Taberner, Central Neurotransmitter Turnover,University Park Press, Baltimore (1981).

    Google Scholar 

  3. W. C. Rose, Amino acid requirements of man, Fed. Proc. 8:546 (1949).

    CAS  Google Scholar 

  4. A. E. Harper and J. K. Tews, Nutritional and metabolic control of brain amino acid concentrations, in: Amino Acid Availability and Brain Function in Health and Disease, G. Huether, ed., Springer-Verlag, Berlin, pp. 3–12 (1988).

    Chapter  Google Scholar 

  5. J. D. Fernstrom and D. V. Faller, Neutral amino acids in the brain: changes in response to food ingestion, J. Neurochem. 30:1531 (1978).

    Article  PubMed  CAS  Google Scholar 

  6. J. K. Tews, J. Greenwood, 0. E. Pratt, and A. E. Harper, Valine entry into rat brain after diet-induced changes in plasma amino acids, Am. J. Physiol. 252:R78 (1987).

    PubMed  CAS  Google Scholar 

  7. J. D. Fernstrom, Role of precursor availability in control of monoamine biosynthesis in brain, Physiol. Rev. 63:484 (1983).

    PubMed  CAS  Google Scholar 

  8. I. N. Acworth, M. J. During, and R. J. Wurtman, Processes that couple amino acid availability to neurotransmitter synthesis and release, in: Amino Acid Availability and Brain Function in Health and Disease, G. Huether, ed., Springer-Verlag, Berlin, pp. 117–136 (1988).

    Chapter  Google Scholar 

  9. J. C. Scwartz, C. Lampart, and C. Rose, Histamine formation in rat brain in vivo: effects of histidine loads, J. Neurochem. 19:801 (1972).

    Article  Google Scholar 

  10. R. A. Rubin, L. A. Ordonez, and R. J. Wurtman, Physiological dependence of brain methionine and S-adenosylmethionine concentrations on serum amino acid patterns, J. Neurochem. 23:227 (1974).

    Article  PubMed  CAS  Google Scholar 

  11. S. N. Young, The significance of tryptophan, phenylalanine, tyrosine and their metabolites in the nervous system, in: Handbook of Neurochemistry, Vol. 3, Metabolism in the Nervous System, A. Lajtha, ed., Second Edition, Plenum, New York, pp. 559–581 (1983).

    Google Scholar 

  12. M. J. During, M. P. Heyes, A. Freese, S, P. Markey, J. B. Martin, and H. Roth, Quinolinic acid concentrations in striatal extracellular fluid reach potentially neurotoxic levels following systemic L-tryptophan loading, Brain Res. 476:384 (1989).

    Article  PubMed  CAS  Google Scholar 

  13. F. Moroni, P. Russi, G. Lombardi, M. Beni, and V. Carla, Presence of kynurenic acid in the mammalian brain, J. Neurochem. 51: 177 (1988).

    Article  PubMed  CAS  Google Scholar 

  14. J. H. James, J. Escourrou, J. E. Fischer, Blood-brain neutral amino acid transport activity is increased after portacaval anastomosis, Science 200:1395 (1978).

    Article  PubMed  CAS  Google Scholar 

  15. A. M. Mans, M. R. DeJoseph, D. W. Davis, and R. A. Hawkins, Regional amino acid transport into brain during diabetes: effect of plasma amino acids, Am. J. Physiol. 253:E575 (1987).

    PubMed  CAS  Google Scholar 

  16. C. M. McKean, D. E. Boggs, and N. A. Peterson, The influence of high phenylalanine and tyrosine on the concentrations of essential amino acids in brain, J. Neurochem. 15:235 (1968).

    Article  PubMed  CAS  Google Scholar 

  17. F. A. Hommes, Aminoacidemias and brain dysfunction, in: Handbook of Neurochemistry, Vol. 10, Pathological Neurochemistry, A. Lajtha, ed., Second Edition, Plenum, New York, pp. 15–41 (1983).

    Google Scholar 

  18. C. B. Smith, G. E. Deibler, N. Eng, K. Schmidt, and L. Sokoloff, Measurement of local cerebral protein synthesis in vivo: influence of recycling of amino acids derived from protein, Proc. Natl. Acad. Sci. USA 85: 9341 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. M. Kirikae, M. Diksic, and Y. L. Yamamoto, The transfer coefficients for L-valine and the rate of incorporation of L-[1–14C]valine into proteins in normal adult rat brain, J. Cereb. Blood Flow Metab. 8:598 (1988).

    Article  PubMed  CAS  Google Scholar 

  20. R. A. Hawkins, S. C. Huang, J. R. Barrio, R. E. Keen, D. Feng, J. C. Mazziotta, and M. E. Phelps, Estimation of local cerebral protein synthesis rates with L-[1–14C]leucine and PET: methods, model, and results in animals and humans, J. Cereb. Blood Flow Metab. 9: 446 (1989).

    Article  PubMed  CAS  Google Scholar 

  21. J. D. Fenstermacher and S. I. Rapoport. Blood-brain barrier, in: Handbook of Physiology: The Cardiovascular System IV, S. R. Greger, ed., American Physiological Society, Bethesda, pp. 969– 1000 (1984).

    Google Scholar 

  22. P. M. Gross, N. M. Sposio, S. E. Pettersen, and J. D. Fenstermacher,Differences in function and structure of the capillary endothelium in gray matter, white matter and a circumventricular organ of rat brain, Blood Vessels 23:261 (1986).

    PubMed  CAS  Google Scholar 

  23. M. M. Brightman and T. S. Reese, Junctions between intimately apposed cell membranes in the vertebrate brain, J. Cell Biol. 40:648 (1969).

    Article  PubMed  CAS  Google Scholar 

  24. C. Crone and S. P. Olesen, Electrical resistance of brain microvascular endothelium, Brain Res. 241:49 (1982).

    Article  PubMed  CAS  Google Scholar 

  25. Q. R. Smith and S. I. Rapoport, Cerebrovascular permeability coefficients to sodium, potassium and chloride, J. Neurochem. 46:1732 (1986).

    Article  PubMed  CAS  Google Scholar 

  26. K. Ohno, K. D. Pettigrew, and S. I. Rapoport, Lower limits of cerebrovascular permeability to nonelectrolytes in the conscious rat, Am. J. Physiol. 235:H299 (1978).

    PubMed  CAS  Google Scholar 

  27. W. M. Pardridge and W. H. Oldendorf, Transport of metabolic substrates through the blood-brain barrier, J. Neurochem. 28:5 (1977).

    Article  PubMed  CAS  Google Scholar 

  28. W. H. Oldendorf, Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection, Am. J. Physiol. 221:1629 (1971).

    PubMed  CAS  Google Scholar 

  29. W. H. Oldendorf and J. Szabo, Amino acid assignment to one of three blood-brain barrier amino acid carriers, Am. J. Physiol. 230:94 (1976).

    PubMed  CAS  Google Scholar 

  30. R. A. Hawkins, A. M. Mans, and J. F. Biebuyck, Amino acid supply to individual cerebral structures in awake and anesthetized rats, Am. J. Physiol. 242:E1 (1982).

    PubMed  CAS  Google Scholar 

  31. Y. Takasato, S. I. Rapoport, and Q. R. Smith, An in situ brain perfusion technique to study cerebrovascular transport in the rat, Am. J. Physiol. 24 7:H484 (1984).

    Google Scholar 

  32. Q. R. Smith, Y. Takasato, and S. I. Rapoport, Kinetic analysis of L-leucine transport across the blood-brain barrier, Brain Res. 311:167 (1984).

    Article  PubMed  CAS  Google Scholar 

  33. J. Greenwood, A.S. Hazell, and O. E. Pratt, The transport of leucine and aminocyclopentanecarboxylate across the intact, energy-depleted rat blood-brain barrier, J. Cereb. Blood Flow Metab. 9:226 (1989).

    Article  PubMed  CAS  Google Scholar 

  34. A. L. Betz and G. W. Goldstein, Polarity of the blood-brain barrier: neutral amino acid transport into isolated brain capillaries, Science 202:225 (1978).

    Article  PubMed  CAS  Google Scholar 

  35. P. A. Cancilla and L. E. DeBault, Neutral amino acid transport properties of cerebral endothelial cells in vitro, J. Neuropath. and Exp. Neurol. 42:191 (1983).

    Article  CAS  Google Scholar 

  36. K. L. Audus and R. T. Borchardt, Characteristics of the large neutral amino acid transport system of bovine brain microvessel endothelial cell layers, J. Neurochem. 47:484 (1986).

    Article  PubMed  CAS  Google Scholar 

  37. Q. R. Smith, S. Momma, M. Aoyagi, and S. I. Rapoport, Kinetics of neutral amino acid transport across the blood-brain barrier, J. Neurochem. 49:1651 (1987).

    Article  PubMed  CAS  Google Scholar 

  38. A. Tovar, J. K. Tews, N. Torres, and A. E. Harper, Some characteristics of threonine transport across the blood-brain barrier of the rat, J. Neurochem. 51:1285 (1988).

    Article  PubMed  CAS  Google Scholar 

  39. S. Momma, M. Aoyagi, S. I. Rapoport, and Q. R. Smith. Phenylalanine transport across the blood-brain barrier as studied with the in situ brain perfusion technique, J. Neurochem. 48:1291 (1987).

    Article  PubMed  CAS  Google Scholar 

  40. D. L. Oxender and H. N. Christensen, Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell, J. Biol. Chem. 238:3686 (1963).

    PubMed  CAS  Google Scholar 

  41. M. A. Shotwell, M. S. Kilberg, and D. L. Oxender, The regulation of neutral amino acid transport in mammalian cells, Biochim. Biophys. Acta 737:267 (1983).

    PubMed  CAS  Google Scholar 

  42. H. N. Christensen, Role of amino acid transport and countertransport in nutrition and metabolism, Physiol. Rev. 70:43 (1990).

    PubMed  CAS  Google Scholar 

  43. L. A. Wade and R. Katzman, Synthetic amino acids and the nature of L-dopa transport at the blood-brain barrier, J. Neurochem. 25:837 (1975).

    Article  PubMed  CAS  Google Scholar 

  44. C. Cangiano, P. Cardelli-Cangiano, J. H. James, F. Rossi-Fanelli, M. A. Patriz, K. A. Brackett, R. Strom, and J. E. Fischer, Brain microvessels take up large neutral amino acids in exchange for glutamine, J. Biol. Chem. 258:8949 (1983).

    PubMed  CAS  Google Scholar 

  45. M. Aoyagi, B. W. Agranoff, L. C. Washburn, and Q, R. Smith, Blood-brain barrier transport of 1-aminocyclcohexanecarboxylic acid, a nonmeta-bolizable amino acid for in vivo studies of brain transport, J. Neurochem. 50:1220 (1988).

    Article  PubMed  CAS  Google Scholar 

  46. H. N. Christensen, On the development of amino acid transport systems,Fed. Proc. 32:19 (1973).

    PubMed  CAS  Google Scholar 

  47. J. Lerner and D. L. Larimore, Comparative aspects of the apparent Michaelis constant for neutral amino acid transport in several animal tissues, Comp. Biochem. Physiol. 84B:235 (1986).

    CAS  Google Scholar 

  48. K. M. Hargreaves and W. M. Pardridge, Neutral amino acid transport at the human blood-brain barrier, J. Biol. Chem. 263:19392 (1988).

    PubMed  CAS  Google Scholar 

  49. M. A. Shotwell, P. M. Mattes, D. W. Jayme, and D. L. Oxender, Regulation of amino acid transport system L in Chinese hamster ovary cells, J. Biol. Chem. 257:2974 (1982).

    PubMed  CAS  Google Scholar 

  50. D. T. Vistica, Cellular pharmacokinetics of the phenylalanine mustards, Pharmac. Ther. 22:379 (1983).

    Article  CAS  Google Scholar 

  51. L. Weissbach, M. E. Handlogten, H. N.Christensen, and M.S. Kilberg, Evidence for two Na-independent neutral amino acid transport systems in primary cultures of rat hepatocytes, J. Biol. Chem. 257: 12006 (1982).

    PubMed  CAS  Google Scholar 

  52. H. Weiler-Guttler, H. Zinke, B. Mockel, A. Frey, and H. G. Gassen, cDNA cloning and sequence analysis of the glucose transporter from porcine blood-brain barrier, Biol. Chem. Hoppe-Seyler 370:467 (1989).

    Article  PubMed  CAS  Google Scholar 

  53. Q. R. Smith, Y. Takasato, D. J. Sweeney, and S. I. Rapoport, Regional cerebrovascular transport of leucine as measured by the in situ brain perfusion technique, J. Cereb. Blood Flow Metab. 5:300 (1985).

    Article  PubMed  CAS  Google Scholar 

  54. L. B. Yunger and R. D. Cramer, Measurement and correlation of partition coefficients of polar amino acids, Mol. Pharmacol. 20:602 (1981).

    PubMed  CAS  Google Scholar 

  55. I. Tayarani, J. M. Lefauconnier, F. Roux, and J. M. Bourre, Evidence for an alanine, serine, and cysteine system of transport in isolated brain capillaries, J. Cereb. Blood Flow Metab. 7:585 (1987).

    Article  PubMed  CAS  Google Scholar 

  56. G. Banos, P. M. Daniel, S. R. Moorhouse, and O. E. Pratt, The influx of amino acids into the brain of the rat in vivo: the essential compared with some nonessential amino acids, Proc. R. Soc. Land. B. 183:59 (1973).

    Article  CAS  Google Scholar 

  57. G. Banos, P. M. Daniel, S. R. Moorhouse, and 0. E. Pratt, The require-of the brain for some amino acids, J. Physiol. (Lond.) 246:539 (1975).

    CAS  Google Scholar 

  58. H. Sershen and A. Lajtha, Inhibition patterns by analogs indicates the presence of ten or more transport systems for amino acids in brain cells, J. Neurochem. 32:719 (1979).

    Article  PubMed  CAS  Google Scholar 

  59. L. A. Wade and H. M. Brady, Cysteine and cystine transport at the blood-brain barrier, J. Neurochem. 37:730 (1981).

    Article  PubMed  CAS  Google Scholar 

  60. R. G. Blasberg, J. D. Fenstermacher, and C. S. Patlak, Transport of alpha-aminoisobutyric acid across brain capillary and cellular membranes, J. Cereb. Blood Flow Metab. 3:8 (1983).

    Article  PubMed  CAS  Google Scholar 

  61. T. Nagashima, J. M. Lefauconnier, and Q. R. Smith, Developmental changes in neutral amino acid transport across the blood-brain barrier, J. Cereb. Blood Flow Metab. 7:S501 (1987).

    Google Scholar 

  62. C. Cangiano, P. Cardelli-Cangiano, F. Ceci, A. Fiori, M. Mulieri, M. Muscaritoli, C. Barberini, R. Strom, and R. Fanelli, Uptake of amino acids by brain microvessels isolated from rats with experimental chronic renal failure, J. Neurochem. 51:1675 (1988).

    Article  PubMed  CAS  Google Scholar 

  63. G. Banos, P. M. Daniel, and 0. E. Pratt, Saturation of a shared mechanism which transports L-arginine and L-lysine into the brain of the living rat. J. Physiol. (Lond.) 236:29 (1974).

    CAS  Google Scholar 

  64. M. F. White, The transport of cationic amino acids across the plasma membrane of mammalian cells, Biochim. Biophys. Acta 822:355 (1985).

    PubMed  CAS  Google Scholar 

  65. W. H. Oldendorf, P. D. Crane, L. D. Braun, E. A. Gosschalk, J. D. Diamond, and M. A. Hill, pH dependence of histidine affinity for blood-brain barrier carrier transport systems for neutral and cationic amino acids, J. Neurochem. 50:857 (1988).

    Article  PubMed  CAS  Google Scholar 

  66. A. M. Mans, J. F. Biebuyck, K. Shelly, and R. A. Hawkins, Regional blood-brain barrier permeability to amino acids after portacaval anastomosis, J. Neurochem. 38:705 (1982).

    Article  PubMed  CAS  Google Scholar 

  67. H. Davson, M. N. Lipovac, J. B. Mackic, J. E. Preston, M. B. Segal, G. Tang, and B. V. Zlokovic, Kinetics of L-glutamic acid uptake by the luminal side of the blood-brain barrier studied using an in situ perfused brain of the anesthetized guinea pig, J. Physiol. (Lond.) 423:36P (1990).

    Google Scholar 

  68. W. M. Pardridge, Regulation of amino acid availability to brain: Selective control mechanisms for glutamate, in: Glutamic Acid: Advances in Biochemistry and Physiology, L. J. Filer, Jr., ed., Raven Press, New York, pp. 125–137 (1979).

    Google Scholar 

  69. L. R. Drewes, W. P. Conway, and D. D. Gilboe, Net amino acid transport between plasma and erythrocytes and perfused dog brain, Am. J. Physiol. 233:E320 (1977).

    PubMed  CAS  Google Scholar 

  70. J. M. Pell and E. N. Bergman, Cerebral metabolism of amino acids and glucose in fed and fasted sheep, Am. J. Physiol. 244:E282 (1983).

    PubMed  CAS  Google Scholar 

  71. M. T. Price, M. E. Pusateri, S. E. Crow, S. Buchsbaum, J. W. Olney, and O. H. Lowry, Uptake of exogenous aspartate into circumven-tricular organs but not other regions of adult mouse brain, J. Neurochem. 42: 740 (1984).

    Article  PubMed  CAS  Google Scholar 

  72. P. M. Daniel, 0. E. Pratt, and P. A. Wilson, The transport of leucine into the brain of the rat in vivo: saturable and nonsaturable components of influx, Proc. Roy. Soc. (Lond.) B. 196:333 (1977).

    Article  CAS  Google Scholar 

  73. L. P. Miller, W. M. Pardridge, L. D. Braun, and W. H. Oldendorf, Kinetic constants for blood-brain barrier amino acid transport in conscious rats, J. Neurochem. 45:1427 (1985).

    Article  PubMed  CAS  Google Scholar 

  74. R. A. Klein, M. J. Moore, and M. W. Smith, Selective diffusion of neutral amino acids across lipid bilayers, Biochim. Biophys. Acta 233:420 (1971).

    Article  PubMed  CAS  Google Scholar 

  75. H. N. Christensen, Distinguishing amino acid transport systems of a given cell or tissue, Methods of Enzymology 173:576 (1989).

    Article  CAS  Google Scholar 

  76. M. Aoyagi, Y. Takada, M. Matocha, S. I. Rapoport, and Q. R. Smith, Glucose transport across the blood-brain barrier: a kinetic analysis using the in situ brain perfusion technique. J. Neuro-chem. Submitted (1990).

    Google Scholar 

  77. J. E. Preston, M. B. Segal, G. J. Walley, and B. V. Zlokovic, Neutral amino acid uptake by the isolated perfused sheep choroid plexus, J. Physiol. (Lond.) 408:31 (1989).

    CAS  Google Scholar 

  78. E. M. Wright, Active transport of glycine glycine across the frog arachnoid membrane, Brain Res. 76:354 (1974).

    Article  PubMed  CAS  Google Scholar 

  79. E. M. Wright, G. J. Nogueira, and E. Levin, Role of the pia mater in the transfer of substances in and out of the cerebrospinal fluid, Exp. Brain Res. 13:294 (1971).

    Google Scholar 

  80. K. C. Wadhwani, Q. R. Smith, and S. I. Rapoport, Facilitated transport of L-phenylalanine across blood-nerve barrier of rat peripheral nerve, Am. J. Physiol. 258:R1436 (1990).

    PubMed  CAS  Google Scholar 

  81. N. J. Abbott, J. Hart, L. Rogac, M. Taylor, and B. V. Zlokovic, Amino acid transport by the glial blood-brain barrier of the anesthetized dogfish, J. Physiol. (Lond.) 407:25P (1988).

    Google Scholar 

  82. O. E. Pratt, Transport inhibition in the pathology of phenylketonuria and other inherited metabolic diseases, J. Inherited Metabol. Dis. 5:75 (1982).

    Article  CAS  Google Scholar 

  83. J. D. Fernstrom and R. J. Wurtman, Brain serotonin content: physiological regulation by plasma neutral amino acids, Science 178: 414 (1972).

    Article  PubMed  CAS  Google Scholar 

  84. J. C. LaManna and S. I. Harik, Regional studies of blood-brain barrier transport of glucose and leucine in awake and anesthetized rats, J. Cereb. Blood Flow Metab. 6:717 (1986).

    Article  PubMed  CAS  Google Scholar 

  85. P. Cardelli-Cangiano, C. Cangiano, J. H. James, B. Jeppsson, W. Brenner, and J. E. Fischer, Uptake of amino acids by brain microvessels isolated from rats after portacaval anastomosis, J. Neurochem. 36:627 (1981).

    Article  PubMed  CAS  Google Scholar 

  86. T. Jonung, P. Rigotti, J. H. James, K. Brackett, and J. E. Fischer, Effect of hyperammonemia and methionine sulfoxime on the kinetic parameters of blood-brain transport of leucine and phenylalanine, J. Neurochem. 45: 308 (1985).

    Article  PubMed  CAS  Google Scholar 

  87. P. Rigotti, T. Jonung, J. C. Peters, J. H. James, and J. E. Fischer, Methionine sulfoxime prevents the accumulation of large neutral amino acids in brain of portacaval-shunted rats, J. Neurochem. 44:929 (1985).

    Article  PubMed  CAS  Google Scholar 

  88. A. M. Mans, J. F. Biebuyck, and R. A. Hawkins, Ammonia selectively stimulates neutral amino acid transport across blood-brain barrier, Am. J. Physiol. 245:C74 (1983).

    PubMed  CAS  Google Scholar 

  89. A. L. McCall, W. R. Millington, and R. J. Wurtman, Metabolic fuel and amino acid transport into the brain in experimental diabetes mellitus, Proc. Natl. Acad. Sci. USA 79:5406 (1982).

    Article  PubMed  CAS  Google Scholar 

  90. J. T. Brosnan, R. G. P. Forsey, M. E. Brosnan, Uptake of tyrosine and leucine in vivo by brain of diabetic and control rats, Am. J. Physiol. 247:C450 (1984).

    PubMed  CAS  Google Scholar 

  91. C. A. Fenerty and W. E. Lindup, Brain uptake of L-tryptophan and diazepam: the role of plasma protein binding, J. Neurochem. 53:416 (1989).

    Article  PubMed  CAS  Google Scholar 

  92. Q. R. Smith, S. Fukui, P. J. Robinson, and S. I. Rapoport, Influence of cerebral blood flow on tryptophan uptake into brain, in: Amino Acids: Chemistry, Biology and Medicine, G. Lubec and G. A. Rosenthal, ed., ESCOM, Amsterdam, pp. 364–369 (1990).

    Google Scholar 

  93. T. L. Perry, S. Hansen, J. Kennedy, CSF amino acids and plasma-CSF amino acid ratios in adults, J. Neurochem. 24:587 (1975).

    Article  PubMed  CAS  Google Scholar 

  94. P. H. Hutson, G. S. Sarna, B. D. Kantamaneni, and G. Curzon, Monitoring the effect of a tryptophan load on brain indole metabolism in freely moving rats by simultaneous cerebrospinal fluid sampling and brain dialysis, J. Neurochem. 44:1266 (1985).

    Article  PubMed  CAS  Google Scholar 

  95. H. Davson, D. J. Begley, D. G. Chain, F. O. Briggs, and M. T. Shepherd, Steady-state distribution of cycloleucine and alpha-aminoisobutyric acid between plasma and cerebrospinal fluid, Exp. Neurol. 91:163 (1986).

    Article  PubMed  CAS  Google Scholar 

  96. P. Brust, Changes in regional blood-brain transfer of L-leucine elicited by arginine-vasopressin, J. Neurochem. 46:534 (1986).

    Article  PubMed  CAS  Google Scholar 

  97. P. Brust and J. Zicha, Kinetics of regional blood-brain barrier transport of L-leucine in Brattleboro rats, Biomed. Biochim. Acta 12:1013 (1988).

    Google Scholar 

  98. T. Eriksson and A. Carlsson, Beta-adrenergic control of amino acid uptake of large neutral amino acids, Life Sci. 42:1583 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Smith, Q.R. (1991). The Blood-Brain Barrier and the Regulation of Amino Acid Uptake and Availability to Brain. In: Vranic, M., Efendic, S., Hollenberg, C.H. (eds) Fuel Homeostasis and the Nervous System. Advances in Experimental Medicine and Biology, vol 291. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5931-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5931-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5933-3

  • Online ISBN: 978-1-4684-5931-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics