Blood-Brain Barrier Transport of Glucose, Free Fatty Acids, and Ketone Bodies

  • William M. Pardridge
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 291)

Abstract

Fuel homeostasis is important to the regulation of central nervous system (CNS) function because cerebral pathways of metabolism of glucose, ketone bodies, and amino acids are dependent upon plasma substrate availability. Therefore, brain function and brain metabolism are under nutritional regulation and the interface between diet or fuel homeostasis and brain function is the limiting transport barrier between blood and brain, which is the brain capillary endothelial wall, i.e., the blood-brain barrier (BBB) (Figure 1).

Keywords

Combustion Lactate Lipase Pyruvate Choline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.E. Phelps, D.E. Kuhl, and J.C. Mazziotta, Metabolic mapping of the brain’s response to visual stimulation: Studies in humans, Science 211: 1445 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    L. Sokoloff, Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose, J. Cereb. Blood Flow Metab. 1:7(19811.PubMedCrossRefGoogle Scholar
  3. 3.
    W.M. Pardridge, Brain metabolism: A perspective from the blood-brain barrier, Physiol.Rgv, 63:1481 (1983).Google Scholar
  4. 4.
    W.M. Pardridge, Blood-brain barrier transport of nutrients, Nutr. Rev. 44: 15 (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    N.B. Ruderman, P.S. Ross, M. Berger, and M.N. Goodman, Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats, Biochem. J. 138: 1 (1974).PubMedGoogle Scholar
  6. 6.
    R.A. Hawkins, A.M. Mans, and D.W. Davis, Regional ketone body utilization by rat brain in starvation and diabetes, Am. J. Physiol. 250:E169 (1986).PubMedGoogle Scholar
  7. 7.
    W.M. Pardridge, P.D. Crane, L.J. Mietus, and W.H. Oldendorf, Kinetics of regional blood-brain barrier transport and brain phosphorylation of glucose and 2-deoxyglucose in the barbiturate-anesthetized rat, J. Neurochem. 38:560 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    J.B.G. Ghajar, F. Plum, and T.E. Duffy, Cerebral oxidative metabolism and blood flow during acute hypoglycemia and recovery in unanesthetized rats, J. Neurochem. 38:397 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    W.M. Pardridge and W.H. Oldendorf, Transport of metabolic substrates through the blood-brain barrier, J. Neurochem. 28:5 (1977).PubMedCrossRefGoogle Scholar
  10. 10.
    W.M. Pardridge, Recent advances in blood-brain barrier transport, Ann. Rev. Pharmacol.Tpjcicol. 28:25 (1988).CrossRefGoogle Scholar
  11. 11.
    G.I. Bell, T. Kayano, J.B. Buse, C.F. Burant, J. Takeda, D. Lin, H. Fukumoto, and S. Seino, Molecular biology of mammalian glucose transporters, Diabetes Care 13:198 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    M.A. Kasanicki and P.F. Pilch, Regulation of glucose-transporter function, Diabetes Care13:219 (1990).PubMedCrossRefGoogle Scholar
  13. 13.
    B. Thorens, M.J. Charron, and H.F. Lodish, Molecular physiology of glucose transporters, Diabetes Care 13:209 (1990).PubMedCrossRefGoogle Scholar
  14. 14.
    A.G. de Herreros and M.J. Birnbaum, The acquisition of increased insulin-responsive hexose transport in 3T3-L1 adipocytes correlates with expression of a novel transporter gene, J. Biol. Chem. 264: 19994 (1989).Google Scholar
  15. 15.
    J.J. Birnbaum, H.C. Haspel, and O.M. Rosen, Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein, Proc. Natl. Acad. Sci. USA83:5784(1986).PubMedCrossRefGoogle Scholar
  16. 16.
    J.S. Flier, M. Mueckler, A. L. McCall, and H.F. Lodish, Distribution of glucose transporter messenger RNA transcripts in tissues of rat and man, J. Clin. Invest. 79:657 (1987).PubMedCrossRefGoogle Scholar
  17. 17.
    R.J. Boado and W.M. Pardridge, The brain-type glucose transporter mRNA is specifically expressed at the blood-brain barrier, Biochem. Biophvs. Res. Comm. 166: 174 (1990).CrossRefGoogle Scholar
  18. 18.
    Pardridge, W.M., Boado, R.J., and Farrell, C.R., Brain-type glucose transporter is selectively localized to the blood-brain barrier. Studies with quantitative Western blotting and in situ hybridization. J. Biol. Chem.. in press.Google Scholar
  19. 19.
    R. A. DeFronzo, R. Hendler, and N. Christensen, Stimulation of counterregulatory hormonal responses in diabetic man by a fall in glucose concentration, Diabetes289:125 (1980).Google Scholar
  20. 20.
    P.J. Boyle, N.S. Schwartz, S.D. Shah, W.E. Clutter, and P.E. Cryer, Plasma glucose concentrations at the onset of hypoglycemic symptoms in patients with poorly controlled diabetes and in nondiabetes, N. Engl. J. Med. 218. 1487 (1988).CrossRefGoogle Scholar
  21. 21.
    A. Gjedde and C. Crone, Blood-brain glucose transfer: Repression in chronic hyperglycemia, Science 214:456 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    A.L. McCall, W.R. Millington, and R.J. Wurtman, Metabolic fuel and amino acid transport into the brain in experimental diabetes mellitus, Proc. Natl. Acad. Sci. USA79:5406(1982).PubMedCrossRefGoogle Scholar
  23. 23.
    S.I. Harik and J.C. LaManna, Vascular perfusion and blood-brain glucose transport in acute and chronic hyperglycemia, J. Neurochem. 51:1924 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    R.B. Duckrow, Glucose transfer into rat brain during acute and chronic hyperglycemia, Metabol. Brain Dis. 3:201 (1988).CrossRefGoogle Scholar
  25. 25.
    W.M. Pardridge, D. Triguero, and C.R. Farrell, Down-regulation of blood-brain barrier glucose transporter in experimental diabetes, Diabetes, in press (1990).Google Scholar
  26. 26.
    R.B. Duckrow, D.C. Beard, and R.W. Brennan, Regional cerebral blood flow decreases during chronic and acute hyperglycemia, Stroke 18:52 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    J. E. Cremer, D.E. Ray, G.S. Sarna, and V.J. Cunningham, A study of the kinetic behaviour of glucose based on simultaneous estimates of influx and phosphorylation in brain regions of rats in different physiological states, Brain Res. 221:331 (1981).PubMedCrossRefGoogle Scholar
  28. 28.
    R.A. Hawkins, A.W. Mans, D.W. Davis, L.S. Hibbard, and D.M. Lu, Glucose availability to individual cerebral structures is correlated to glucose metabolism, J. Neurochem.40:1013(1983).PubMedCrossRefGoogle Scholar
  29. 29.
    R.B. Duckrow and R.M. Bryan, Jr., Regional cerebral glucose utilization during hyperglycemia, J. Neurochem. 48:989 (1987).PubMedCrossRefGoogle Scholar
  30. 30.
    H.J.L. Frank, W.M. Pardridge, T. Jankovic-Vokes, H.V. Vinters, and W.L. Morris, Insulin binding to the blood-brain barrier in the streptozotocin diabetic rat, J. Neurochem.47:405(1986).PubMedCrossRefGoogle Scholar
  31. 31.
    T.B. Choi, R.J. Boado, and W.M. Pardridge, Blood-brain barrier glucose transporter mRNA is increased in experimental diabetes mellitus, Biochem. Biophvs. Res.Comm. 164:375 (1989).CrossRefGoogle Scholar
  32. 32.
    G.F. Cahill, Jr., M.G. Herrera, A.P. Morgan, J. Soeldner, J. Steinke, P.L. Levy, G.A. Richard, Jr., and D.M. Kipnis, Hormone-fuel interrelationships during fasting, J. Clin. Invest. 45:1751 (1966).PubMedCrossRefGoogle Scholar
  33. 33.
    E.J. Fritschka, L. Ferguson, and J.J. Spitzer, Increased free fatty acid turnover in CSF during hypotension in dogs, Am. J. Physiol. 236:H802 (1979).PubMedGoogle Scholar
  34. 34.
    J.C. Miller, J.M. Gnaedinger, and S.I. Rapoport, Utilization of plasma fatty acid in rat brain: Distribution of [14C]palmitate between oxidative and synthetic pathways, JL Neurochem. 49:1507(1987).CrossRefGoogle Scholar
  35. 35.
    R. Spector, Fatty acid transport through the blood-brain barrier, J. Neurochem. 50:639 (1988).PubMedCrossRefGoogle Scholar
  36. 36.
    W.M. Pardridge and L.J. Mietus, Palmitate and cholesterol transport through the rat blood-brain barrier, J. Neurochem. 34:463 (1980).PubMedCrossRefGoogle Scholar
  37. 37.
    W.H. Oldendorf, Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids, Am. J. Physiol. 224: 1450 (1973).PubMedGoogle Scholar
  38. 38.
    A.R. Conn, D.I. Fell, and R.D. Steele, Characterization of a-keto acid transport across blood-brain barrier in rats. Am. J. Physiol. 245:E253 (1983).PubMedGoogle Scholar
  39. 39.
    D.C. De Vivo, The effects of ketone bodies on glucose utilization, in: “Cerebral Metabolism and Neural Function,” R.A. Hawkins, W.D. Lust, and F.A. Welsh, eds., Williams and Wilkins, Baltimore (1980).Google Scholar
  40. 40.
    R.G. Kammula, Metabolism of ketone bodies by ovine brain in vivo, Am. J. Physiol.231:1490 (1976).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • William M. Pardridge
    • 1
  1. 1.Department of Medicine and Brain Research InstituteUCLA School of MedicineLos AngelesUSA

Personalised recommendations