Use of Peptide Probes to Study Brain Regulation of Glucose Metabolism

  • Marvin R. Brown
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 291)


Peptides represent the largest class of biologically active ligand that exist within central nervous system (CNS) neurons and their axonal projections. The physiologic role that these peptides play in the regulation of brain cellular functions, including neurotransmission, has not been determined. Most brain peptides display biological actions when administered into the CNS, thus leading to hypotheses regarding their physiologic roles. In addition to characterization of the physiologic roles of these peptides within the CNS, it is evident that these substances may be utilized as neurochemical probes with unique specificities for select neuronal populations to study both cellular and integrated CNS functions. An area of importance to physiologists has been the use of peptides to modify brain neuroendocrine and autonomic nervous system neuro-humoral effector mechanisms that regulate visceral organ function. This chapter will describe some of the CNS peptides that may be used as probes to study neuroendocrine and autonomic control of glucose metabolism.


Glucose Metabolism Blood Glucose Concentration Adrenal Medulla Central Command Central Nervous System Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. L. Lee and R. E. Miller, The hepatic vagus nerve and the neural regulation of insulin secretion, Endocrinol. 117:307 (1985).CrossRefGoogle Scholar
  2. 2.
    A. Niijima, Glucose-sensitive afferent nerve fibers in the hepatic branch of the vagus nerve in the guinea pig, J. Physiol. 332:315 (1982).PubMedGoogle Scholar
  3. 3.
    O. Yutaka and H. Yoshimatsu, Neural network of glucose monitoring system, J. Auton. Nerv. Syst. 10:359 (1984) .CrossRefGoogle Scholar
  4. 4.
    B. R. Landau, Y. Takaoka, M. A. Abrams, S. M. Genuth, M. Van Houten, B. I. Posner, R. J. White, S. Ohgaku, A. Horvat, and E. Hemmelgarn, Binding of insulin by monkey and pig hypothalamus, Diabetes 32:284 (1983).PubMedCrossRefGoogle Scholar
  5. 5.
    B. E. Dunning, J. H. Moltz, and C. P. Fawcett, Actions of neurohypophyseal peptides on pancreatic hormone release, Amer. J. Physiol. 246:E108 (1984).PubMedGoogle Scholar
  6. 6.
    E. Bobbioni and B. Jeanrenaud, A rat hypothalamic extract enhances insulin secretion in vitro, Endocrinol. 113:1958 (1983).CrossRefGoogle Scholar
  7. 7.
    L. J. Grimes, C. Mok, and J. M. Martin, Effect of a bovine hypothalamic extract on glucose utilization by rat adipocytes, Amer. J. Physiol. 234:E554 (1978) .PubMedGoogle Scholar
  8. 8.
    L. A. Idahl and J. M. Martin, Stimulation of insulin release by a ventrolateral hypothalamic factor. J. Endocr. 51:601 (1971).PubMedCrossRefGoogle Scholar
  9. 9.
    G. A. Taborsky and D. Porte, Jr., Stress-induced hyperglycemia, in: “The Neurobiology and Neuro-endocrinology of Stress,” M. R. Brown, C. Rivier, and G. Koob, eds., Marcel Dekker, Inc., New York (in press).Google Scholar
  10. 10.
    J. Pernow, J. Schwieler, T. Kahan, P. Hjemdahl, J. Oberle, B. G. Wallin, and J. M. Lundberg, Influence of sympathetic discharge pattern on norepinephrine and neuropeptide Y release, Amer. J. Physiol. 257: H866 (1989).PubMedGoogle Scholar
  11. 11.
    J. M. Lundberg, B. Hamberger, M. Schultzberg, T. Hokfelt, P-O Granberg, S. Efendic, L. Terenius, M. Goldstein, and R. Luft, Enkephalin-and somatostatin-like immunoreactivities in human adrenal medulla and pheochromocytoma, Proc. Natl. Acad. Sci. USA 76:4079 (1979).PubMedCrossRefGoogle Scholar
  12. 12.
    G Terenghi, J. M. Polak, I. M. Varndell, Y. C. Lee, J. Wharton, and S. R. Bloom, Neurotensin-like immunoreactivity in a subpopulation of noradrenaline-containing cells of the cat adrenal gland, Endocrinol. 112:226 (1983).CrossRefGoogle Scholar
  13. 13.
    R. Corder, D. F. J. Mason, D. Perrett, P. J. Lowry, V. Clement-Jones, E. A. Linton, G. M. Besser, and L. H. Rees, Simultaneous release of neurotensin, somatostatin, enkephalins and catecholamines from perfused cat adrenal glands, Neuropeptides 3:9 (1982) .PubMedCrossRefGoogle Scholar
  14. 14.
    L. W. Swanson and P. E. Sawchenko, Hypothalamic integration: organization of the paraventricular and supraoptic nuclei, Ann. Rev. Neurosci. 6: 269 (1982) .CrossRefGoogle Scholar
  15. 15.
    M. R. Brown, M. Mortrud, R. Crum, and P. Sawchenko, Role of somatostatin in the regulation of vasopressin secretion, Brain Res. 452:212 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    M. R. Brown, R. Crum, and P. Sawchenko, Somatostatin-28 (SS-28) stimulation of vasopressin (AVP) and oxytocin (OT) secretion, Endocrinol. 122(Suppl.): 660 (1988).Google Scholar
  17. 17.
    C. D. Sladek, Regulation of vasopressin release by neurotransmitters, neuropeptides and osmotic stimuli, Prog. Brain Res. 60:71 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    S. Amir and P. D. Butler, Thyrotropin-releasing hormone blocks neurally-mediated hyperglycemia through central action, Peptides 9:31 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    M. R. Brown, Thyrotropin releasing factor: a putative CNS regulator of autonomic nervous system outflow, Life Sci. 28:1789 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    M. R. Brown, L. A. Fisher, J. Spiess, J. Rivier, C. Rivier, and W. Vale, Corticotropin-releasing factor (CRF): actions on the sympathetic nervous system and metabolism, Endocrinol. 111:928 (1982).CrossRefGoogle Scholar
  21. 21.
    J. E. Morley and A. S. Levine, Intraventricular cholecystokinin octapeptide produces hyperglycemia in rats,Life Sci. 28:2187 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    A. Iguchi, H. Matsunaga, T. Nomura, M. Gotoh, and N. Sakamoto, Glucoregulatory effects of intrahypothalamic injections of bombsin and other peptides, Endocrinol. 114:2242 (1984).CrossRefGoogle Scholar
  23. 23.
    M. Brown, Y. Tache, and D. Fisher, Central nervous system action of bombesin: mechanism to induce hyperglycemia, Endocrinol. 105:660 (1979).CrossRefGoogle Scholar
  24. 24.
    J. M. Overton and L. A. Fisher, Modulations of central nervous system actions of corticotropin-releasing factor by dynorphin-related peptides, Brain Res.488:233 (1989).PubMedCrossRefGoogle Scholar
  25. 25.
    N. A. Scott, V. Webb, J. H. Boublik, J. Rivier, and M. R. Brown, The cardiovascular actions of centrally administered neuropeptide Y, Regul. Peptides 25:247 (1989) .CrossRefGoogle Scholar
  26. 26.
    H. Somiya and T. Tonoue, Neuropeptides as central integrators of autonomic nerve activity: effects of TRH, SRIF, VIP and bombesin on gastric and adrenal nerves, Regul. Peptides 9:47 (1984).CrossRefGoogle Scholar
  27. 27.
    M. R. Brown, K. Carver, and L.A. Fisher. Bombesin: central nervous system actions to affect the autonomic nervous system, in: “Annals of the New York Academy of Sciences, Vol. 547, Bombesin-like Peptides in Health and Disease,” Y. Tache, P. Melchiorri, and L. Negri, eds., New York Academy of Sciences, New York (1989).Google Scholar
  28. 28.
    G. R. Van Loon, N. M. Appel, and D. Ho, Endorphin-induced stimulation of central sympathetic outflow: endorphin increases plasma concentrations of epinephrine, norepinephrine, and dopamine in rats, Endocrinol. 109:46 (1981).CrossRefGoogle Scholar
  29. 29.
    M. R. Brown, L. A. Fisher, V. Webb, W. W. Vale, and J. E. Rivier, Corticotropin-releasing factor: a physiologic regulator of adrenal epinephrine secretion, Brain Res. 328:355 (1985).PubMedCrossRefGoogle Scholar
  30. 30.
    D. A. Fisher and M. Brown, Somatostatin analog: plasma catecholamine suppression mediated by the central nervous system, Endocrinol. 107:714 (1980).CrossRefGoogle Scholar
  31. 31.
    M. R. Brown and L. A. Fisher, Brain peptide regulation of adrenal epinephrine secretion, Amer. J. Physiol.247:E41 (1984).PubMedGoogle Scholar
  32. 32.
    M. R. Brown, J. Rivier, and W. Vale, Somatostatin: central nervous system actions on glucoregulation, Endocrinol. 104:1709 (1979).CrossRefGoogle Scholar
  33. 33.
    M. R. Brown and L. A. Fisher, Corticotropin releasing factor: effects on the autonomic nervous system and visceral systems, Fed. Proc. 44:243 (1985).PubMedGoogle Scholar
  34. 34.
    C. Rivier and W. Vale, Effects of corticotropin-releasing factor, neurohypophyseal peptides, and catecholamines on pituitary function, Fed. Proc. 44: 189 (1985).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Marvin R. Brown
    • 1
  1. 1.Departments of Medicine and SurgeryUniversity of California, San DiegoSan DiegoUSA

Personalised recommendations