Advertisement

A Correlation Between Gene Transcriptional Activity and Cerebral Glucose Metabolism in Alzheimer’s Disease-Affected Neocortex: Cause or Effect?

  • W. J. Lukiw
  • P. Handley
  • M. K. Sutherland
  • L. Wong
  • D. R. McLachlan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 291)

Abstract

Our laboratory has measured mRNA pool sizes in neocortex afflicted with Alzheimer’s disease (AD). We have observed a repression of gene expression in the temporal and parietal regions compared to age-matched control neocortex. These changes in messenger RNA pool size closely parallel the observed alterations in local cerebral metabolic rates for glucose (LCMR-g), as detected by positron emission tomography (PET). For example, deficits in both gene transcription and glucose metabolism appear to be the greatest in AD-affected superior temporal neocortex (Brodmann area 22) but are less apparent in the primary visual cortex (Brodmann area 17) or in the cerebellum. The unresolved question is whether changes in gene expression are the cause or effect of altered glucose metabolism. However, the non-random reductions in the pool size for certain neocortical mRNAs argue in favour of altered gene expression as the primary event.

Keywords

Positron Emission Tomography Brodmann Area Neurofibrillary Degeneration Brain Energy Metabolism Associative Brain Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chin S. S. M. and Liem R. K., 1987, Neurofilaments: A Review and an Update. in: “Alterations in the Neuronal Cytoskeieton in Alzheimer’s Disease, Advances in Behavioral Biology 34”, G. Perry, ed., Plenum Press, New York.Google Scholar
  2. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., and Rutter, W. J., 1979, Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease, Biochemistry, 18:5294.PubMedCrossRefGoogle Scholar
  3. Clark, A. W., Krekoski C. A. and Parhad I. M., 1989, Altered expression of genes for amyloid and cytoskeietal proteins in Alzheimer cortex. Ann. Neurol., 25:331.PubMedCrossRefGoogle Scholar
  4. Crapper McLachlan, D. R., Wong, L., Bergeron, C., and Baimbridge, K. D., 1987, Calmodulin and calbindin D28K in Alzheimer disease, Alzheimer’s Disease and Associated Disorders, 1:171.CrossRefGoogle Scholar
  5. Crapper McLachlan D. R., Lukiw W. J., Wong, L., Bergeron, C., and Bech-Hansen N. T., 1988, Selective messenger RNA reduction in Alzheimer’s disease, Mol. Brain Res., 3:255.CrossRefGoogle Scholar
  6. Fried land, R. P., Brun, A., and Budinger, T. F., 1985, Pathological and positron emission tomography correlations in Alzheimer’s disease, Lancet, i:228.CrossRefGoogle Scholar
  7. Goldman, J. E., 1986, Cytoskeietal protein abnormalities in neurodegenerative diseases, Ann. of Neurol., 19:209.CrossRefGoogle Scholar
  8. Guillemette J. G., Wong, L., Crapper McLachlan, D. R., and Lewis, P. N., 1986, Characterization of messenger RNA from the cerebral cortex of control and Alzheimer brain, J. of Neurochem., 47:987.CrossRefGoogle Scholar
  9. Heiss W. D., and Phelps M. E., 1983, Brain protein metabolism in dementia and schizophrenia, in: “Positron Emission Tomography of the Brain,” Springer Verlag, Berlin.CrossRefGoogle Scholar
  10. Hoyer, S., 1990, Brain energy metabolism and its significance for Alzheimer’s disease. Abstract 33. Second International Conference on Alzheimer’s Disease, Neurobiol. Aging, 11: 260.Google Scholar
  11. Johnson, S A., Morgan, D. G., and Finch, C. E., 1986, Extensive postmortem stability of RNA from rat and human brain, J. Neurosci.Res., 16:267.PubMedCrossRefGoogle Scholar
  12. Kittur, S., Hoh, J., Kawas, C., Tourtellotte, W., Marksberry, W., and Ad-ler, W., 1990, Neurofilament gene expression in Alzheimer’s disease. Abstract 135. Second International Conference on Alzheimer’s Disease, Neurobiol. Aging, 11:285.Google Scholar
  13. Lukiw, W. J. and Crapper McLachlan D. R., 1990, Chromatin structure and gene expression in Alzheimer’s disease, Mol. Brain Res., 7:227.PubMedCrossRefGoogle Scholar
  14. Mazziotta, J.C. and Phelps, M. E., 1990, The pathophysiology of Alzheimer’s disease as identified with PET. Abstract 36. Second International Conference on Alzheimer’s Disease, Neurobiol. Aging, 11:261.Google Scholar
  15. McGeer, P. L., Kamo, H., Harrop, R., McGeer, E. G., Martin, W. R. W., Pate D. and Li, D. K. B., 1986, Comparison of PET, MRI and CT with pathology in a proven case of Alzheimer’s disease, Neurology, 36:1569.PubMedCrossRefGoogle Scholar
  16. Milner, R. J., and Sutcliffe, J. G., 1983, Gene expression in rat brain, Nucleic Acids Res., 11:5497.PubMedCrossRefGoogle Scholar
  17. Montaldi, D., Brooks, D. N., McColl., J. H., Wyper, D., Patterson, J., Barron, E. and McCulloch J., 1990, Measurements of regional cerebral blood flow and cognitive performance in Alzheimer’s disease, J. Neurol., 53:33.Google Scholar
  18. Morrison, M. R., and Griffin, W. S. T., 1981, The isolation and in vitro translation of undegraded messenger RNAs from human post-mortem brain, Analyt. Biochem., 113:318.Google Scholar
  19. Naber, D., and Dahnke, H. G., 1979, Protein and nucleic acid content in the aging brain. Neuropathol. App. Neurobiol., 5:17.CrossRefGoogle Scholar
  20. Rapoport, S. I., Horwitz, B., Haxby, J. V., and Grady, C.L., 1986, Alzheimer’s disease: metabolic uncoupling of associative brain regions, Can. J. Neurol. Sci., 13:540.PubMedGoogle Scholar
  21. Taylor G. R., Carte, G. I., Grow, T. J., Johnson, J. A., Fairbairn, A. F., Perry, E. K. and Perry, R. H., 1986, Recovery and measurement of specific RNA species from post-mortem brain tissue: A general reduction in Alzheimer’s disease detected by molecular hybridization, Exp. Mol. Pathol., 44: 111.PubMedCrossRefGoogle Scholar
  22. Terry, R. D., 1983, Cortical morphometry in Alzheimer’s disease, in: “Biological Aspects of Alzheimer’s Disease,” R. Katzman, ed., Cold Spring Harbor Laboratory, New York.Google Scholar
  23. Thompson R. J., 1973, Studies on RNA synthesis in two populations of nuclei from the mammalian cerebral cortex, J. Neurochem., 21:19.PubMedCrossRefGoogle Scholar
  24. Watson, J. B., and Sutcliffe, J. G., 1987, Primate brain specific cytoplasmic transcript of the Alu Repeat Family, Mol. Cell. Biol., 7: 3324.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • W. J. Lukiw
    • 1
  • P. Handley
    • 1
  • M. K. Sutherland
    • 1
  • L. Wong
    • 1
  • D. R. McLachlan
    • 1
  1. 1.Center for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoCanada

Personalised recommendations