Abnormal Brain Glucose Metabolism in Alzheimer’s Disease, as Measured by Positron Emission Tomography

  • Stanley I. Rapoport
  • Barry Horwitz
  • Cheryl L. Grady
  • James V. Haxby
  • Charles DeCarli
  • Mark B. Schapiro
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 291)


Resting glucose metabolism in the association neocortices, measured with positron emission tomography (PET), is disturbed early and throughout the course of Alzheimer’s disease (AD), whereas resting metabolism in the primary sensory and motor neocortices is relatively spared. Neocortical metabolic asymmetries precede and predict appropriate deficits in neocortically-mediated cognitive functions in the initial course of disease, Indicating that PET can be used for the early diagnosis and characterization of AD. Metabolic abnormalities of the neocortices in late-stage AD correlate with regional densities of neurofibrillary tangles but not of senile plaques post mortem, suggesting that tangle formation is important in disease pathogenesis.

Despite demonstrating reduced resting glucose metabolism, visual association areas demonstrate equivalent (as percent baseline) blood flow responses in mildly-moderately demented AD patients and controls who are performing a face matching task. Thus, viability and integrity of this cortical circuitry is retained into the intermediate stages of the disease, and glucose delivery to the AD brain can be increased.


Positron Emission Tomography Down Syndrome Neurofibrillary Tangle Senile Plaque Alzheimer Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, C. R., Selkoe, D. J., and Potter, H., 1988, Immunochemical identification of the serine protease inhibitor alpha 1-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease, Cell, 52:487.PubMedCrossRefGoogle Scholar
  2. Ball, M. J., and Nuttall, K., 1981, Topography of neurofibrillary tangles and granulovacuoles in hippocampi of patients with Down’s syndrome: quantitative comparison with normal ageing and Alzheimer’s disease, Neuropathol. Appl. Neurobiol., 7: 13.PubMedCrossRefGoogle Scholar
  3. Ball, M. J., Fisman, M., Hachinski, V., Blume, W., Fox, A., Kral, V. A., Kirshen, A. J., Fox, H., and Merskey, H., 1985, A new definition of Alzheimer’s disease: a hippocampal dementia, Lancet, Jan., 14.Google Scholar
  4. Benton, A., 1985, Visuoperceptual, visuospatial and visuoconstructive disorders, in: “Clinical Neuropsychology,” 2nd Ed., K. M. Heilman, E. Valenstein, eds., Oxford University Press, Oxford.Google Scholar
  5. Blessed, B., Tomlinson, B. E., and Roth, M., 1968, The association between quantitative measures of dementia and of senile change in the cerebral gray matter of elderly subjects, Brit. J. Psychiatry 114:797.CrossRefGoogle Scholar
  6. Brun, A., and Gustafson, L., 1976, Distribution of cerebral degeneration in Alzheimer’s disease. A clinico-pathological study, Arch. Psychiatr. Nervenkr. 223: 15.PubMedCrossRefGoogle Scholar
  7. Casanova, M. F., Walker, L. C., Whitehouse, P. J., and Price, D. L., 1985, Abnormalities of the nucleus basalis in Down’s syndrome, Ann. Neurol. 18:310.PubMedCrossRefGoogle Scholar
  8. Creasey, H., Schwartz, M., Frederickson, H., Haxby, J. V., and Rapoport, S. I., 1986, Quantitative computed tomography in dementia of the Alzheimer type, Neurology 36: 1563.PubMedCrossRefGoogle Scholar
  9. DeCarli, C., Atack, J. R., Ball, M. J., Kaye, J. A., Grady, C. L., Fewster, P., Katz, D., Schapiro, M. B., and Rapoport, S. I., in preparation, Regional neurofibrillary tangle densities, but not regional senile plaque densities, correlate with regional reductions in cerebral glucose utilization during life in Alzheimer disease patients.Google Scholar
  10. Delaere, P., Duyckaerts, C., Brion, J. B., Poulain, V., Hauw, J. J., 1989, Tau, paired helical filaments and amyloid in the neocortex: a morphometric study of 15 cases with graded intellectual status in aging and senile dementia of the Alzheimer type, Acta Neuropathol. (Berlin) 77:645.CrossRefGoogle Scholar
  11. Duara, R., Grady, C. L., Haxby, J. V., Sundaram, M., Cutler, N. R., Heston, L., Moore, A., Schlageter, N. L., Larson, S., and Rapoport, S. I., 1986, Positron emission tomography in Alzheimer’s disease, Neurology 36:879.PubMedCrossRefGoogle Scholar
  12. Duyckaerts, C., Hauw, J. J., Piette, F., Rainsard, C., Poulain, V., Berthaux, P., and Escourolle, R., 1985, Cortical atrophy in senile dementia of the Alzheimer type is mainly due to a decrease in cortical length, Acta Neuropathol. (Berl.) 66:72.CrossRefGoogle Scholar
  13. Folstein, M. F., Folstein, S. E., and McHugh, P. R., 1975, “Mini-Mental State.” A practical method for grading the cognitive state of patients for the clinician, J. Psychiat. Res. 12:189.PubMedCrossRefGoogle Scholar
  14. Foster, N. L., Chase, T. N., Mansi, L., Brooks, R., Fedio, P., Patronas, N. J., and Di Chiro, G., 1984, Cortical abnormalities in Alzheimer’s disease, Ann. Neurol. 16:649.PubMedCrossRefGoogle Scholar
  15. Friedland, R. P., Budinger, T. F., Koss, E., and Ober, B. A., 1985, Alzheimer’s disease: anterior-posterior and lateral hemispheric alterations in cortical glucose utilization, Neurosci. Lett. 53:235.PubMedCrossRefGoogle Scholar
  16. Friedland, R. P., Koss, E., Haxby, J. V., Grady, C. L., Luxenberg, J., Schapiro, M. B., and Kaye, J., 1988, Alzheimer disease: clinical and biological heterogeneity, Ann. Int. Med. 109:298.PubMedGoogle Scholar
  17. Friedland, R. P., Jagust, W. J., Huesman, R. H., Koss, E., Knittel, B., Mathis, C. A., Ober, B. A., Mazoyer, B. M., and Budinger, T. F., 1989, Regional cerebral glucose transport and utilization in Alzheimer’s disease, Neurology 39:1427.PubMedCrossRefGoogle Scholar
  18. Fukuyama, H., Kameyama, M., Harada, K., Nishizawa, S., Senda, M., Mukai, T., Yonekura, Y., and Torizuka, K., 1989, Glucose metabolism and rate constants in Alzheimer’s disease examined with dynamic positron emission tomography scan, Acta Neurol. Scand. 80:307.PubMedCrossRefGoogle Scholar
  19. Gjedde, A., 1983, Modulation of substrate transport to the brain, Acta Neurol. Scand. 67:3.PubMedCrossRefGoogle Scholar
  20. Gjedde, A., and Crone, C., 1981, Blood-brain glucose transfer: repression in chronic hyperglycemia, Science 214:456.PubMedCrossRefGoogle Scholar
  21. Glenner, G. G., 1985, On causative theories in Alzheimer’s disease, Hum. Pathol. 16:433.PubMedCrossRefGoogle Scholar
  22. Grady, C., Haxby, J., Horwitz, B., Schapiro, M., Carson, R., Herscovitch, P., and Rapoport, S. I., 1990, Activation of regional cerebral blood flow (rCBF) in extrastriate cortex during a face matching task in patients with dementia of the Alzheimer type (DAT), Soc. Neurosci. Abstr.Google Scholar
  23. Grady, C. L., Haxby J. V., Horwitz, B., Sundaram, M., Berg, G., Schapiro, M., Friedland, R. P., and Rapoport, S.I., 1988, A longitudinal study of the early neuropsychological and cerebral metabolic changes in dementia of the Alzheimer type, J. Clin. Exp. Neuropsychol. 10:576.PubMedCrossRefGoogle Scholar
  24. Grady, C. L., Haxby, J., Schapiro, M. B., Kumar, A., Friedland, R. P. and Rapoport, S. I., 1989, Heterogeneity in dementia of the Alzheimer type (DAT): subgroups identified from cerebral metabolic patterns using positron emission tomography (PET), Neurology 39(Suppl. 1):167.Google Scholar
  25. Grady, C. L., Haxby, J. V., Schlageter, N. L., Berg, G., and Rapoport, S. I., 1986, Stability of metabolic and neuropsychological asymmetries in dementia of the Alzheimer type, Neurology 36:1390.PubMedCrossRefGoogle Scholar
  26. Grundke-Iqbal, I., Iqbal, K., Tung, Y.-C., Quinlan, M., Wisniewski, H.M., and Binder, L. I., 1986, Abnormal phosphorylation of the microtubule-associated protein x (tau) in Alzheimer cytoskeletal pathology, Proc. Natl. Acad. Sci. (USA). 83:4913.CrossRefGoogle Scholar
  27. Hardy, J. A., Mann, D. M. A., Wester, P., and Winbland, B., 1986, An integrative hypothesis concerning the pathogenesis and progression of Alzheimer’s disease, Neurobiol. Aging 7:489.PubMedCrossRefGoogle Scholar
  28. Haxby, J. V., 1986, Cerebral metabolic rate of glucose and Alzheimer’s disease: Reply, J. Cereb. Blood Flow Metab. 6:125.CrossRefGoogle Scholar
  29. Haxby, J. V., Duara, R., Grady, C. L., Cutler, N. R., and Rapoport, S. I., 1985, Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer’s disease, J. Cereb. Blood Flow Metab. 5:193.PubMedCrossRefGoogle Scholar
  30. Haxby, J. V., Grady, C. L., Duara, R., Schlageter, N., Berg, G., and Rapoport, S. I., 1986, Neocortical metabolic abnormalities precede non-memory cognitive deficits in early Alzheimer’s-type dementia, Arch. Neurol. 43:882.PubMedCrossRefGoogle Scholar
  31. Haxby, J. V., Grady, C. L., Friedland, R. P., and Rapoport, S. I., 1987, Neocortical metabolic abnormalities precede nonmemory cognitive impairments in early dementia of the Alzheimer type, J. Neural Transmission, 24 (Suppl):49.Google Scholar
  32. Haxby, J. V., Grady, C. L., Horwitz, B., Schapiro, M. B., Carson, R. E., Ungerleider, L. G., Mishkin, M., Herscovitch, P., Friedland, R. P. and Rapoport, S. I., 1988, Mapping two visual pathways in man with regional cerebral blood flow (rCBF) as measured by positron emission tomography and H215O, Soc. Neurosci. Abstr., 14:750.Google Scholar
  33. Haxby, J. V., Grady, C. L., Koss, E., Horwitz, B., Schapiro, M. B., Katz, D., Friedland, R. P., and Rapoport, S. I., in press, Longitudinal study of cerebral metabolic asymmetries and associated neuropsychological deficits in early dementia of the Alzheimer type.Google Scholar
  34. Heston, L. L., Mastri, A. R., Anderson, V. E., and White, J., 1981, Dementia of the Alzheimer type. Clinical genetics, natural history, and associated conditions, Arch. Gen. Psychiatry 38:1085.PubMedCrossRefGoogle Scholar
  35. Horwitz, B., Grady C. L., Schlageter, N. L., Duara, R., and Rapoport, S. I., 1987, Intercorrelations of regional cerebral glucose metabolic rates in Alzheimer’s disease, Brain Res. 407:294.PubMedCrossRefGoogle Scholar
  36. Huang, S.-C, Phelps, M. E., Hoffman, E. J., Sideris, K., Selin, C. J., and Kuhl, D. E., 1980, Non-invasive determination of local cerebral metabolic rate of glucose in man, Am. J. Physiol. 238:E69.PubMedGoogle Scholar
  37. Hyman, B. T., Van Hoesen, G. W., Damasio A. R., and Barnes, C. L., 1984, Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation, Science (Wash.) 225: 1168.CrossRefGoogle Scholar
  38. Hyman, B. T., Van Hoesen, G. W., Kromer, L. J., and Damasio, A. R., 1986, Perforant pathway changes and the memory impairment of Alzheimer’s disease, Ann. Neurol. 20:472.PubMedCrossRefGoogle Scholar
  39. Kalaria, R. N., and Harik, S. I., 1988, Reduced glucose transporter at the blood-brain barrier and in cerebral cortex in Alzheimer disease, J. Neurochem. 53: 1083.CrossRefGoogle Scholar
  40. Kessler, R. M., Goble, J. C., Bird, J. H., Girton, M. E., Doppman, J. L., Rapoport, S. I., and Barranger, J. A., 1984, Measurement of blood-brain barrier permeability with positron emission tomography and 68Ga EDTA., J. Cerebral Blood Flow Metab., 4:323.CrossRefGoogle Scholar
  41. King, M.-C., Wilson, A. C., 1975, Evolution at two levels in humans and chimpanzees, Science (Wash.) 188: 107.CrossRefGoogle Scholar
  42. Lewis, D. A., Campbell, M. J., Terry, R. D., and Morrison, J. H., 1987, Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer’s disease: a quantitative study of visual and auditory cortices, J. Neurosci. 7:1799.PubMedGoogle Scholar
  43. Luxenberg, J. S., Haxby, J. V., Creasey, H., Sundaram, M., and Rapoport, S. I., 1987, Rate of ventricular enlargement in dementia of the Alzheimer type correlates with rate of neuropsychological deterioration, Neurology 37: 1135.PubMedCrossRefGoogle Scholar
  44. Mann, D. M., Marcyniuk, B., Yates, P. D., Neary, D., and Snowden, J. S., 1988, The progression of the pathological changes of Alzheimer’s disease in frontal and temporal neocortex examined both at biopsy and at autopsy, Neuropathol. Appl. Neurobiol. 14: 177.PubMedCrossRefGoogle Scholar
  45. Mann, D. M. A., Yates, P. O., and Marcyniuk, B., 1984, Alzheimer’s presenile dementia, senile dementia of Alzheimer type and Down’s syndrome in middle age form an age related continuum of pathological changes, Neuropathol. Appl. Neurobiol. 10: 185.PubMedCrossRefGoogle Scholar
  46. Mann, D. M. A., Yates P. O., and Marcyniuk, B., 1985, Correlation between senile plaque and neurofibrillary tangle counts in cerebral cortex and neuronal counts in cortex and subcortical structures. Neurosci. Lett. 56:51.PubMedCrossRefGoogle Scholar
  47. McCall, A. L., Fixman, L. B., Tornheim, K., Chick, W., and Ruderman, N. B., 1986, Chronic hypoglycemia increases brain glucose transport, Am. J. Physiol. 251:E442.PubMedGoogle Scholar
  48. McGeer, P. L., Kamo, H., Harrop, R., McGeer, E. G., Martin, W. R. W., Pate, B. D., and Li, D. K. B., 1986, Comparison of PET, MRI, and CT with pathology in a proven case of Alzheimer’s disease. Neurology 36: 1569.PubMedCrossRefGoogle Scholar
  49. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., and Stadlan, E. M., 1984, Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease, Neurology 34:939.PubMedCrossRefGoogle Scholar
  50. Metter, E. J., Riege, W. H., Kameyama, M., Kuhl, D. E., and Phelps, M. E., 1984, Cerebral metabolic relationships for selected brain regions in Alzheimer’s, Huntington’s, and Parkinson s diseases, J. Cereb. Blood Flow Metab. 4:500.PubMedCrossRefGoogle Scholar
  51. Miller, J. D., De Leon, M. J., Ferris, S. H., Kluger, A., George, A. E., Reisberg, B., Sachs, H. J., and Wolf, A. P., 1987, Abnormal temporal lobe response in Alzheimer’s disease during cognitive processing as measured by 11C-2-deoxy-D-glucose and PET. J. Cerebral Blood Flow Metab., 7:248.CrossRefGoogle Scholar
  52. Mishkin, M., Ungerleider, L. G., and Macko, K. A., 1983, Object vision and spatial vision: two cortical pathways. Trends Neurosci., 6:414.CrossRefGoogle Scholar
  53. Morrison, J. H., Lewis, D. A., Campbell, M. J., Huntley, G. W., Benson, D. L., and Bouras, C., 1987, A monoclonal antibody to non-phosphorylated neurofilament protein marks the vulnerable cortical neurons in Alzheimer’s disease, Brain Res. 416:331.PubMedCrossRefGoogle Scholar
  54. Najlerahim, A., and Bowen, D. M., 1988, Regional weight loss of the cerebral cortex and some subcortical nuclei in senile dementia of the Alzheimer type, Acta Neuropathol. (Berl.) 75:509.CrossRefGoogle Scholar
  55. Neary, D., Snowden, J. S., Mann, D. M. A., Bowen, D. M., Sims, N. R., Northern, B., Yates, P. O., and Davison, A. N., 1986, Alzheimer’s disease: a correlative study. J. Neurol. Neurosurg. Psychiatry 49:229.PubMedCrossRefGoogle Scholar
  56. Palmert, M. r., Golde, T. E., Cohen, M. L., Kovacs, D. M., Tanzi, R. E., Gusella, J. F., Usiak, M. F., Younkin, L. H., and Younkin, S. G., 1988, Amyloid protein precursor messenger RNAs: differential expression in Alzheimer’s disease. Science 241:1080.PubMedCrossRefGoogle Scholar
  57. Pandya, D. N., and Seltzer, B., 1982, Association areas of the cerebral cortex, Trends Neurosci. 5:386.CrossRefGoogle Scholar
  58. Pardridge, W. M., In Press, Blood-brain barrier transport of glucose, ketone bodies and free fatty acids, In “1st Toronto-Stockholm Symposium on Perspectives in Diabetes Research, The Nervous System and Fuel Homeostasis,” Plenum Press, New York.Google Scholar
  59. Pearson, R. C., Esiri, M. M., Hiorns, R. W., Wilcock, G. K., and Powell, T. P. S., 1985, Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer’s disease, Proc. Natl. Acad. Sci. (USA) 82:4531.CrossRefGoogle Scholar
  60. Raichle, M. E., In Press, Nonoxidative glucose consumption and normal brain function -positron emission tomography studies in normal humans, In “1st Toronto-Stockholm Symposium on Perspectives in Diabetes Research, The Nervous System and Fuel Homeostasis,” Plenum Press, New York.Google Scholar
  61. Rapoport, S. I., 1988a, Brain evolution and Alzheimer’s disease, Rev. Neurol. 144:79.PubMedGoogle Scholar
  62. Rapoport, S. I., 1988b, A phylogenetic hypothesis for Alzheimer’s disease, in: “Genetics and Alzheimer s Disease. Research and Perspectives in Alzheimer’s Disease,” P. M. Sinet, Y. Lamour and Y. Christen, eds., Fondation Ipsen, Springer-Verlag, Berlin.Google Scholar
  63. Rapoport, S. I., 1989, Hypothesis: Alzheimer’s disease is a phylogenetic disease, Med. Hypotheses 29: 147.PubMedCrossRefGoogle Scholar
  64. Rapoport, S. I., and Horwitz, B., 1989, Use of positron emission tomography to study patterns of brain metabolism in relation to age and disease: a correlation matrix approach, in: “Regulatory Mechanisms of Neuron to Vessel Communication in the Brain,” F. Battaini, S. Govoni, M. S. Magnoni and M. Trabucci, eds., NATO Advanced Science Institute Series, Cell Biology, Vol 33, Springer-Verlag, Berlin.Google Scholar
  65. Rapoport, S. I., Horwitz, B., Grady, C. L., and Haxby, J. V., 1987, Alzheimer s disease causes metabolic uncoupling of associative brain regions beyond that seen in the healthy elderly, in: “Modifications of Cell to Cell Signals During Normal and Pathological Aging,” S. Gouani and F. Battaini, eds., NATO ASI Series, Vol. H9, Springer-Verlag, Berlin.Google Scholar
  66. Rapoport, S. I., Horwitz, B., Haxby, J. V., and Grady, C. L., 1986, Alzheimer s disease: metabolic uncoupling of associative brain regions, Can. J. Neurol Sci. 13:540.PubMedGoogle Scholar
  67. Reivich, M., 1974, Blood flow metabolism coupling in brain, Res. Publ. Assoc. Res. Nerv. Ment. Dis. 53:125.PubMedGoogle Scholar
  68. Rogers, J., and Morrison, J. H., 1985, Quantitative morphology and regional and laminar distributions of senile plaques in Alzheimer s disease, J. Neurosci. 5:2801.PubMedGoogle Scholar
  69. Roses, A. D., Pericak-Vance, M. A., Haynes, C. S., Haines, J. L., Gaskell, P. A., Yamaoka, L. H., Hung, W-Y., Clark, C. M., Alberts, M. J., Lee, J. E., Siddique, T., and Heyman, A. L., 1988, Genetic linkage studies in Alzheimer’s disease (AD). Neurology 38(Suppl 1):173.Google Scholar
  70. Schapiro, M. B., Haxby, J. V., Grady, C. L., Rapoport, S. I., 1986, Cerebral glucose utilization, quantitative tomography, and cognitive function in adult Down syndrome, in: “ The Neurobiology of Down Syndrome,” C. J. Epstein, ed., Raven Press, New York.Google Scholar
  71. Schapiro, M. B., Luxenberg, J. S., Kaye, J. A., Haxby, J. V., Friedland, R. P., and Rapoport, S. I., 1989, Serial quantitative computed tomography analysis of brain morphometries in adult Down syndrome at different ages. Neurology 39:1349.PubMedCrossRefGoogle Scholar
  72. Schapiro, M. B., and Rapoport, S. I., 1988, Alzheimer’s disease in premorbidly normal and Down’s syndrome individuals: selective involvement of hippocampus and neocortical associative brain regions, Brain Dysfunction 1:2.Google Scholar
  73. Schellenberg, G. D., Bird, T. D., Wijsman, E. M., Moore, D. K., Boenhnke, M., Bryant, E. M., Lampe, T. H., Nochlin, D., Sumi, S. M., Deeb, S. S., Beyreuther, K., and Martin, G. M., 1988, Absence of linkage of chromosome 21q21 markers to familial Alzheimer’s disease, Science (Wash.) 241:1507.CrossRefGoogle Scholar
  74. Schwartz, M. L., Goldman-Rakic, P. S., 1984, Callosal and intrahemispheric connectivity of the prefrontal association cortex in Rhesus monkey: relation between intraparietal and principal sulcal cortex, J. Comp. Neurol. 226:403.PubMedCrossRefGoogle Scholar
  75. Smith, L. S., Bottomley, P. A., Drayer, B. P. and Herfkens, R. J., 1986, Localized clinical 31P NMR sprectroscopy in Huntington’s, Parkinson’s, Alzheimer’s and Binswanger’s diseases, Abstr. Fifth Annual Meeting Soc. Magnetic Resonance in Medicine, August 19-22, 1986, Montreal, 4:1386.Google Scholar
  76. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., and Shinohara, M., 1977, The [l4C]deoxyglucose methods for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized rat, J. Neurochem., 28:897.PubMedCrossRefGoogle Scholar
  77. St George-Hyslop, P. H., Tanzi, R. E., Polinsky, R. J., Haines, J. L., Nee, L., Watkins, P. C., Myers, R. H., Feldman, R. G., Pollen, D., Drachman, D., Growdon, J., Bruni, A., Foncin, J.-F., Salmon, D., Frommelt, P., Amaducci, L., Sorbi, S., Piacentini, S., Stewart, G. D., Hobbs, W. J., Conneally, P. M., and Gusella, J. F., 1987, The genetic defect causing familial Alzheimer’s disease maps on chromosome 21, Science (Wash.) 235:885.CrossRefGoogle Scholar
  78. Van Hoesen, G. W., 1982, The primate parahippocampal gyrus: new insights regarding its cortical connections, Trends Neurosci. 5:345.CrossRefGoogle Scholar
  79. Wilcock, G. K., and Esiri, M. M., 1982, Plaques, tangles and dementia: a quantitative study, J. Neurol. Sci. 56:343.PubMedCrossRefGoogle Scholar
  80. Wise, S. P., and Jones, E. P., 1977, Cells of origin and terminal distribution of descending projections of the rat somatic sensory cortex, J. Comp. Neurol. 175:129.PubMedCrossRefGoogle Scholar
  81. Wisniewski, K. E., Wisniewski, H. M., and Wen, G. Y., 1985, Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome, Ann. Neurol. 17:278.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Stanley I. Rapoport
    • 1
  • Barry Horwitz
    • 1
  • Cheryl L. Grady
    • 1
  • James V. Haxby
    • 1
  • Charles DeCarli
    • 1
  • Mark B. Schapiro
    • 1
  1. 1.Laboratory of Neurosciences, National Institute on AgingNational Institutes of HealthBethesdaUSA

Personalised recommendations