Metabolism of Glucose in the Brain of IDDM Subjects

Brain metabolism in diabetes
  • Valdemar Grill
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 291)


Glucose is the predominant fuel used by the brain1–3. Dependency on glucose is demonstrated by the deleterious effect of hypoglycemia on brain functioning. It is therefore not surprising that many mechanisms have evolved to ensure an adequate supply of glucose to the brain. Among these the release of so called counterregulatory hormones during hypoglycemia plays an important role for upholding levels of blood glucose4.


Cerebral Blood Flow Diabetic Subject Glycogen Store Continuous Subcutaneous Insulin Infusion Cereb Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. K. Siesjö, Utilization of substrates of brain tissues, in; Brain Energy Metabolism. New York: Wiley (1978).Google Scholar
  2. 2.
    L. Sokoloff, Cerebral circulation, energy metabolism and protein synthesis: general characteristics and principles of measurement, in: Positron emission tomography and autoradiography: Principles and applications for the brain and heart, New York, Raven Press pp. 1–71 (1986).Google Scholar
  3. 3.
    W. H. Pardridge, Brain metabolism from the blood-brain barrier, Physiol Rev 63:1481–1535 (1983).PubMedGoogle Scholar
  4. 4.
    P. E. Cryer and J. E. Gerich, Glucose counterregulation, hyperglycemia and intensive insulin therapy in diabetes mellitus, N Eng J Med 313:232–239 (1987).Google Scholar
  5. 5.
    C. Crone, Facilitated transfer of glucose from blood into brain tissue, J Physiol 181:103–113 (1965).PubMedGoogle Scholar
  6. 6.
    A. L. McCall, L. B. Fixman, N. Fleming, K. Tornheim, W. Chick and N. B. Ruderman, Chronic hypoglycemia increases brain glucose transport, Am J Physiol 251:E442–E447 (1986).PubMedGoogle Scholar
  7. 7.
    A. Gjedde and C. Crone, Blood-brain glucose transfer: repression in chronic hyperglycemia, Science 214:456–457 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    A. L. McCall, W. R. Millington and R. J. Wurtman, Metabolic fuel and aminoacid transport into the brain in experimental diabetes mellitus, Proc Natl Acad Sci USA 79: 5406–5410 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    S. I. Harik, S. A. Gravina and R. N. Kalaria, Glucose transporter of the blood-brain barrier and brain in chronic hyperglycemia, J Neurochem 51:1930–1934 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    R. B. Duckrow, Glucose transfer into rat brain during acute and chronic hyperglycemia, Metabolic Brain Disease 3: 201–209 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    R. B. Duckrow and R. M. Bryan, Regional cerebral glucose utilizatoin during hyperglycemia, J Neurochem 48: 989–993 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    A. M Mans, M. R. De Joseph, D. W. Davis and R. A. Hawkins, Brain energy metabolism in streptozotocin-diabetes, Biochem J 249:57–62 (1988).PubMedGoogle Scholar
  13. 13.
    The Diabetes Control and Complications Trial (DCCT):Results of feasibility study, Diabetes Care 10:1–19 (1987).CrossRefGoogle Scholar
  14. 14.
    M. Gutniak, G. Blomqvist, L. Widén, S, Stone-Elander, B. Hamberger and V. Grill, Brain uptake and metabolism of [U-ll-C]-D-glucose in insulindependent diabetic subjects, Am J Physiol. In press.Google Scholar
  15. 15.
    K. Mori, N. Cruz, G. Dienel, T. Nelson and L. Sokoloff, Direct chemical measurement of the lumped constant of the [14-C] deoxyglucose method in rat brain: effects of arterial plasma glucose level on the distribution spaces of [14-C] deoxy-glucose and glucose and on lambda, Cereb Blood Flow Metab 9:304–314 (1989).CrossRefGoogle Scholar
  16. 16.
    E, Shapiro, M. Cooper, C.-T. Chen, B. D. Given and K. S. Polonsky, Change in hexose distribution volume and fractional utilization of [12F]-2-deoxy-2-fluoro-D-glu-cose in brain during acute hypoglycemia in humans, Diabetes 39:175–181 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    V. Grill, M. Gutniak, O. Björkman et al., Cerebral blood flow and substrate utilization in insulin-treated diabetic subjects, Am J Physiol. In press.Google Scholar
  18. 18.
    L. Sokoloff, M. Reivich, C. Kennedy et al., The 14C-deoxyglucose method for the measurements of local cerebral glucose utilization: Theory, procedure and normal values in the conscoius and anaesthetized albino rat, J Neurochem 28:897–916 (1977).PubMedCrossRefGoogle Scholar
  19. 19.
    G. Blomqvist, S. Stone-Elander, S. Halldin et al., Measurement of cerebral glucose utilization with PET using [1-11-J D-glucose. J Cereb Blood Flow Metab. In press.Google Scholar
  20. 20.
    P. E. Roland, L. Eriksson, S. Stone-Elander and L. Widen, Does mental activity change the oxidative metabolism of the brain? J Neurosci 7:2373–2389 (1987).PubMedGoogle Scholar
  21. 21.
    R. A. Koeppe, J. E. Holden and W. R. Ip, Performance comparison of parameter estimation techniques for the quantitation of local cerebral blood flow by dynamic positron computed tomography, J Cereb Blood Flow Metab5: 224–234 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    D. J. Brooks, S. R. Gibbs, P. Sharp et al., Regional cerebral glucose transport in insulin-dependent diabetic patients studied using [ll-C]3-0-methyl-D-glucose and positron emission tomography, J Cereb Blood Flow Metab 6:240–244 (1986).PubMedCrossRefGoogle Scholar
  23. 23.
    W. Sacks, Cerebral metabolism of isotopic glucose in normal human subjects, J Appl Physiol 10:37–44 (1957).PubMedGoogle Scholar
  24. 24.
    P. T. Fox, M. E. Raichle, M. A. Mintun and C. Dance, Non-oxidative glucose consumption during focal physiologic neural activity, Science 241:462–464 (1988).PubMedCrossRefGoogle Scholar
  25. 25.
    K. A. Hossman and F. Linn, Regional energy metabolism during functional activation of the brain, J Cereb Blood Flow Metab 7:S297 (1987).Google Scholar
  26. 26.
    B. K. Siesjö, Hypoglycemia: in: Brain Energy Metabolism. New York, Wiley (1978).Google Scholar
  27. 27.
    S. R. Nelson, D. W. Schultz, J. V. Passonneau and 0. H. Lowry, Control of glycogen levels in the brain, J Neuro Chem 15:1271–1279 (1968).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Valdemar Grill
    • 1
  1. 1.Dept EndocrinologyKarolinska HospitalStockholmSweden

Personalised recommendations