Human-Specific Factors are Required for Tat-Mediated Trans-Activation of the HIV-1 and HIV-2 LTRs

  • Michael Newstein
  • Peter R. Shank
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


The regulation of HIV gene expression is a complex process involving the interaction of viral regulatory gene products and host cell factors. The Tat gene has been shown to play an essential role in the positive regulation of viral gene expression (6, 9). HIV-1 Tat mediates its effect through a sequence termed TAR, which has been genetically defined to reside in the R region of the LTR (19). The TAR region is present in the leader sequence of all viral encoded RNAs, as well as both ends the proviral DNA. The boundaries of HIV-1 TAR are +1 to +80 (where +1 indicates the initiation of transcription). The TAR region has the potential to fold into a stem-loop secondary structure when transcribed into RNA.


Human Immunodeficiency Virus Type Human Chromosome Human Immune Deficiency Virus Rodent Cell Microcell Hybrid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berkhout, B., A. Gatignol, A. B. Rabson and K.-T. Jeang. 1990. TAR-independent activation of the HIV-1 LTR: Evidence that tat requires specific regions of the promoter. Cell 62: 757–767.PubMedCrossRefGoogle Scholar
  2. 2.
    Berkhout, B., R. H. Silverman and K.-T. Jeang. 1989. Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 59: 273–282.PubMedCrossRefGoogle Scholar
  3. 3.
    Braddock, M., A. Chambers, W. Wilson, M. P. Esnouf, S. E. Adams, A. J. Kingsman and S. M. Kingsman. 1989. HIV-1 TAT “activates” presynthesized RNA in the nucleus. Cell 58: 269–279.PubMedCrossRefGoogle Scholar
  4. 4.
    Clavel, F., M. Guyader, D. Guetard, M. Salle, L Montagnier and M. Alizon. 1986. Molecular cloning and polymorphism of the human immune deficiency virus type 2. Nature 324: 691–695.Google Scholar
  5. 5.
    Cullen, B. R. 1986. Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell 46: 973–982.PubMedCrossRefGoogle Scholar
  6. 6.
    Dayton, A. I., J. G. Sodroski, C. A. Rosen, W. C. Goh and W. A. Haseltine. 1986. The trans-activator gene of the human T cell lymphotropic virus type III is required for replication. Cell 44: 941–947.PubMedCrossRefGoogle Scholar
  7. 7.
    Dingwall, C., I. Ernberg, M. J. Gait, S. M. Green, S. Heaphy, J. Karn, A. D. Lowe, M. Singh, M. A. Skinner and R. Valerio. 1989. Human immunodeficiency virus 1 tat protein binds trans-activation-responsive region (TAR) RNA in vitro. Proc. Natl. Acad. Sci. U.S.A. 86: 6925–6929.PubMedCrossRefGoogle Scholar
  8. 8.
    Emerman, M., L. Guyader, L. Montagnier, D. Baltimore and M. Muesing. 1987. The specificity of the human immunodeficiency virus type 2 trans-activator is different from that of human immunodeficiency virus type 1. EMBO J. 6: 3755–3762.PubMedGoogle Scholar
  9. 9.
    Fisher, A. G., M. B. Feinberg, S. F. Josephs, ME. Harper, L. M. Marselle, G. Reyes, M. A. Gonda, A. Aldovini, C. Debouk, R. C. Gallo and F. Wong-Staal. 1986. The trans-activator gene of HTLV-III is essential for virus replication. Nature 320: 367–371.Google Scholar
  10. 10.
    Hart, C. E., C.-Y. Ou, J. C. Galphin, J. T. Moore, J. J. Bachler, J. J. Wasmuth, S. R. Petteway and Schochetman. 1989. Human chromosome 12 is required for HIV-1 expression in human-hamster hybrid cells. Science 246: 488–491.PubMedCrossRefGoogle Scholar
  11. 11.
    Jeang, K.-T., P. R. Shank and A. Kumar. 1988. Transcriptional activation of homologous viral long terminal repeats by the human immunodeficiency virus type 1 or the human T-cell leukemia virus type I tat proteins occurs in the absence of de novo protein synthesis. Proc. Natl. Acad. Sci. U.S.A. 85: 82918295.Google Scholar
  12. 12.
    Kao, S. Y., A. F. Calman, P. A. Luciw and B. M. Peterlin. 1987. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330: 489–493.PubMedCrossRefGoogle Scholar
  13. 13.
    Laspia, M. F., A. P. Rice and M. B. Mathews. 1989. HIV-1 tat protein increases transcriptional initiation and stabilizes elongation. Cell 59: 283–292.PubMedCrossRefGoogle Scholar
  14. 14.
    Newstein, M., E. J. Stanbridge, G. Casey and P. R. Shank. 1990. Human chromosome 12 encodes a species-specific factor whichincreases human immunodeficiency virus type 1 tat-mediated trans-activation in rodent cells. J. Virol. 64: 4565–4567.PubMedGoogle Scholar
  15. 15.
    Pavalakis, G. N., B. K. Felber and C. M. Wright. 1988. A fusion assay for the detection of HIV infected cells. p. 439–466 In D. Bolognesi (Ed.) Human retroviruses, cancer, and AIDS. Alan R. Liss, Inc, New York.Google Scholar
  16. 16.
    Peterlin, B. M., P. A. Luciw, P. J. Barr and M. D. Walker. 1987. Elevated levels of mRNA can account for the transactivtion of human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 83: 9734–9738.CrossRefGoogle Scholar
  17. 17.
    Rice, A. and M. Mathews. 1988. Transcriptional but not translational regulation of HIV-1 by the tat gene product. Nature 332: 551–553.PubMedCrossRefGoogle Scholar
  18. 18.
    Rosen, C.A., J.G. Sodroski, W.C. Goh, A.I. Dayton, J. Lippke, and W.A. Haseltine. 1986. Post-transcriptional regulation accounts for the trans-activation of the human Tlymphotropic virus type III. Nature 319: 555–559.PubMedCrossRefGoogle Scholar
  19. 19.
    Rosen, C. A., J. G. Sodroski and W. A. Haseltine. 1985. Location of cis-acting regulatory sequences in the human T-cell leukemia virus type I long terminal repeat. Proc. Natl. Acad. Sci. U.S.A. 82: 6502–6506.PubMedCrossRefGoogle Scholar
  20. 20.
    Saxon, P. J., E. S. Srivatsan, G. V. Leipzig, J. H. Sameshima and E. J. Stanbridge. 1985. Selective transfer of individual human chromosomes to recipient cells. Mol. Cell. Biol. 5: 140–146.PubMedGoogle Scholar
  21. 21.
    Seigel, L. J., L. Ratner, s. F. Josephs, D. Derse, M. B. Feinberg, G. R. Reyes, S. J. O’Brien and F. Wong-Staal. 1986. Transactivation induced by human T-lymphotropic virus type III (HTLV-III) maps to a viral sequence encoding 58 amino acids and lacks tissue specificity. Virology 148: 226–231.PubMedCrossRefGoogle Scholar
  22. 22.
    Selby, M. J. and B. M. Peterlin. 1990. Trans-activation by HIV-1 tat via a heterologous RNA binding protein. Cell 62: 769–776.PubMedCrossRefGoogle Scholar
  23. 23.
    Selden, R. F., K. Burke, M. E. Rowe, H. M. Goodman and D. D. Moore. 1986. Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol. Cell. Biol. 6: 3173–3179.PubMedGoogle Scholar
  24. 24.
    Southgate, C., M. L. Zapp and M. R. Green. 1990. Activation of transcription by HIV-1 tat protein tethered to nascent RNA through another protein. Nature 345: 640–642.PubMedCrossRefGoogle Scholar
  25. 25.
    Viglianti, G. A. and J. I. Mullins. 1988. Functional comparison of trans-activation by simian immunodeficiency virus from Rhesus macaques and human immunodeficiency virus type 1. J. Virol. 62: 4523–4532.PubMedGoogle Scholar
  26. 26.
    Warburton, D., S. Gersen, M.-T. Yu, C. Jackson, B. Handelin and D. Housman. 1990. Monochromosomal hybrids from microcell fusion of human lymphoblastiod cells containing a dominant selectable marker. Genomics 6: 358–366.PubMedCrossRefGoogle Scholar
  27. 27.
    Weeks, K. M., C. Ampe, S. C. Schultz, T. A. Steitz and D. M. Crothers. 1990. Fragments of the HIV-1 Tat protein specifically bind Tar RNA. Science 249: 1281–1285.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Michael Newstein
    • 1
  • Peter R. Shank
    • 1
  1. 1.Division of Biology and MedicineBrown UniversityProvidenceUSA

Personalised recommendations