A Thermodynamic Analysis of the Binding of Nucleic Acid to HIV-1 Reverse Transcriptase

  • George R. Painter
  • Lois L. Wright
  • C. Webster Andrews
  • Nancy Cheng
  • Sam Hopkins
  • Phillip A. Furman
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


Human immunodeficiency virus type 1 (HIV-1) encodes a Mg+2-dependent reverse transcriptase (E.C. that synthesizes a double-stranded DNA copy of genomic RNA. The enzyme purified from virions has been shown to consist of two polypeptides of molecular weights 66,000 and 51,000 (Hoffman et al., 1985; Di Marzo Veronese et al.,1986). The 66 kD subunit has both polymerase and RNase H activities. Like other retroviral reverse transcriptases, the associated RNase H activity is located on the carboxy terminal portion of the polypeptide (Johnson et al., 1986; Hansen et al., 1987; Tisdale et al., 1988). The 51 kD subunit is derived from the 66 kD polypeptide by cleavage at a protease sensitive site on the linker between the polymerase and RNase H domains (Lowe et al.,1988). Catalytically active HIV-1 reverse transcriptase has been cloned and expressed in E. coli (Larder et al., 1987). The recombinant, heterodimeric enzyme is kinetically indistinguishable from the native enzyme purified from virus.


Binary Complex Klenow Fragment Polymerase Domain Human Immunodeficiency Virus Reverse Transcriptase Heterodimeric Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basu, A., Tirumalai, R.S., and Modak, M.J., 1989, Substrate binding in human immunodeficiency virus reverse transcriptase, J. Biol. Chem., 264: 8746–8752.PubMedGoogle Scholar
  2. Brick, P., Ollis, D., and Steitz, T.A., 1983, Crystallization and 7 Å resolution electron density map of the large fragment of Escherichiat coli DNA polymerase I, J. Molec. Biol., 166: 453–456.PubMedCrossRefGoogle Scholar
  3. Burnbaum, J.J., Starzyk, R.M., and Schimmel, P., 1990, Understanding structural relationships in proteins of unsolved three-dimensional structure, Proteins: Structure, Function and Genetics, 7: 99–111.CrossRefGoogle Scholar
  4. Claessens, M., Van Cutsem, E., Lasters, I., and Wodak, S., 1989, Modelling the polypeptide backbone with ‘spare parts’ from known protein structures, Protein Engineering, 2: 335–345.PubMedCrossRefGoogle Scholar
  5. Cowart, M., Gibson, K.J., Allen, D.J., and Benkovic, S.J., 1989, DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases, Biochemistry, 28: 1975–1983.PubMedCrossRefGoogle Scholar
  6. deHaseth, P.L., Lohman, T.M., and Record, M.T., Jr., 1977, Nonspecific interaction of lac repressor with DNA: An association reaction driven by counterion release, Biochemistry, 16: 4783–4790.PubMedCrossRefGoogle Scholar
  7. Di Marzo Veronese, F., DeVico, A.L., Copeland, T.D., Oroszlan, S., Gallo, R.C., and Sarngadharan, M.G., 1986, Characterization of gp41 as the transmembrane protein coded by the HTLV-III/LAV envelope gene, Science, 229: 1402–1406.CrossRefGoogle Scholar
  8. Etink, M.R. and C.A. Ghiron, 1976, Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies, Biochemistry, 15: 672–680.CrossRefGoogle Scholar
  9. Griffith, J., Huberman, J.A., and Kornberg, A., 1971, Electron microscopy of DNA polymerase bound to DNA, J. Mol. Biol., 55: 209–214.PubMedCrossRefGoogle Scholar
  10. Ha, J.-H., Spolar, R.S., and Record, M.T., Jr., 1989, Role of the hydrophobic effects in stability of site-specific protein-DNA complexes, J. Mol. Biol., 209: 801–816.PubMedCrossRefGoogle Scholar
  11. Hansen, J., Schulze, T., and Moelling, K., 1987, RNase H activity associated with bacterially expressed reverse transcriptase of human T-cell lymphotropic virus III/lymphadenopathy-associated virus, J. Biol. Chem., 262: 12393–12396.PubMedGoogle Scholar
  12. Helene, C., 1971, Role of aromatic amino acid residues in the binding of enzymes and proteins to nucleic acids, Nature (London), New Biol., 234 (47): 120–121.Google Scholar
  13. Hershberger, M.V., Lumry, R., and Verrai, R., 1981, The 3-methylindole/n-butanol exciplexes: Evidence for two exciplex sites in indole compounds, Photochem. Photobiol., 33: 609–617.CrossRefGoogle Scholar
  14. Hoffman, A.D., Banapour, B., and Levy, J.A., 1985, Characterization of the AIDS-associated retrovirus reverse transcriptase and optimal conditions for its detection in virions, Virology, 147: 326–335.PubMedCrossRefGoogle Scholar
  15. Hopkins, S., Furman, P.A., and Painter, G.R., 1989, Investigation of the stereochemical course of DNA synthesis catalysed by human immunodeficiency virus type 1 reverse transcriptase, Biochem. Biophys. Res. Comm., 163: 106–110.PubMedCrossRefGoogle Scholar
  16. Huber, H.E., McCoy, J.H., Seehra, J.S., and Richardson, C.C., 1989, Human immunodeficiency virus 1 reverse transcriptase: Template binding, processivity, strand displacement synthesis, and template switching. J. Biol. Chem., 264: 4669–4678.PubMedGoogle Scholar
  17. Johnson, M.S., McClure, M.A., Feng, D.-F., Gray, J., and Doolittle, R.F., 1986, Computer analysis of retroviral poi genes: Assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes, Proc. Natl. Acad. Sci., USA, 83: 7648–7652.PubMedCrossRefGoogle Scholar
  18. Kornberg, A., 1974, “DNA Synthesis,” W.H. Freeman and Co., San Francisco.Google Scholar
  19. Lakowicz, J.R., 1983, “Principles of Fluorescence Spectroscopy,” Plenum Press, New York.Google Scholar
  20. Larder, B., Purifoy, D., Powell, K., and Darby, G., 1987, AIDS virus reverse transcriptase defined by high level expression in Escherichia coli, EMBO J., 6: 3133–3137.PubMedGoogle Scholar
  21. Lohman, T.M., deHaseth, P.L., and Record, M.T., Jr., 1980, Pentalysinedeoxyribonucleic acid interactions: A model for the general effects of ion concentrations on the interactions of proteins with nucleic acids, Biochemistry, 19: 3522–3530.PubMedCrossRefGoogle Scholar
  22. Lowe, D.M., Aitken, A., Bradley, C., Darby, G.K., Larder, B.A., Powell, K.L., Purifoy, D.J.M., Tisdale, M., and Stammers, D.K., 1988, HIV-1 reverse transcriptase: Crystallization and analysis of domain structure by limited proteolysis, Biochemistry, 27: 8884–8889.PubMedCrossRefGoogle Scholar
  23. Majumdar, C., Abbotts, J., Broder, S., and Wilson, S.H., 1988, Studies on the mechanism of human immunodeficiency virus reverse transcriptase, J. Biol. Chem., 263: 15657–15665.PubMedGoogle Scholar
  24. Manning, G.S., 1978, The molecular theory of polyelectrolyte solutions with applications to the electorstatic properties of polynucleotides, Q. Rev. Biophys., 11: 179–246.PubMedCrossRefGoogle Scholar
  25. Ollis, D.L., Brick, P., Hamlin, R., Xuong, N.G., and Steitz, T.A., 1985, Structure of large fragment of Escherichiacoli DNA polymerase I complexed with dTMP, Nature, 313: 762–766.PubMedCrossRefGoogle Scholar
  26. Pabo, C.O. and Sauer, R.T., 1984, Protein-DNA recognition, Annu. Rev. Biochem., 53: 293–321.PubMedCrossRefGoogle Scholar
  27. Record, M.T., Jr., Lohman, T.M., and deHaseth, P., 1976, Ion effects on ligand-nucleic acid interactions, J. Mol. Biol., 107: 145–158.PubMedCrossRefGoogle Scholar
  28. Steitz, T.A., Weber, I.T., and Matthew, J.B., 1983, Catabolite gene activator protein: Structure, homology with other proteins, and cyclic AMP and DNA binding, Cold Spring Harbor Symp. Quant. Biol. 1982, 47 (1): 419–426.Google Scholar
  29. Still, W.C., Richards, N.G., Guida, W.C., Lipton, M., Liskamp, R., Chang, G., and Hendrickson, T. 1989, MacroModel Version 2. 5, Dept. of Chemistry, Columbia University.Google Scholar
  30. Thomas, D., Griffith, J., Furman, P., and Painter, G., 1990, Electron microscopic visualization of HIV-1 reverse transcriptase free and bound to DNA, J. Cellular Biology, 14D: 112.Google Scholar
  31. Tisdale, M., Ertl, P., Larder, B.A., Purifoy, D.J.M., Darby, G.K., and Powell, K.L., 1988, Characterization of human immunodeficiency virus type 1 reverse transcriptase by using monoclonal antibodies: Role of the C terminus in antibody reactivity and enzyme function, J. Virol., 62: 3662–3667.PubMedGoogle Scholar
  32. Walker, M.S., Bednar, T.W., and Lumry, R., 1966, Exciplex formation in the excited state of indole, J. Chem. Phys. 45: 3455–3456.PubMedCrossRefGoogle Scholar
  33. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S., Jr., and Weiner, P., 1984, A new force field for molecular mechanical simulation of nucleic acids and proteins, J. Am. Chem. Soc., 106: 765–784.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • George R. Painter
    • 1
  • Lois L. Wright
    • 1
  • C. Webster Andrews
    • 1
  • Nancy Cheng
    • 2
  • Sam Hopkins
    • 2
  • Phillip A. Furman
    • 2
  1. 1.Divisions of Organic ChemistryBurroughs Wellcome Co.Research Triangle ParkUSA
  2. 2.Divisions of VirologyBurroughs Wellcome Co.Research Triangle ParkUSA

Personalised recommendations