Advertisement

Regulated Proteolytic Processing within Mature Retroviral Capsids

  • Michael M. Roberts
  • Eugene Volker
  • Terry D. Copeland
  • Kunio Nagashima
  • M. Beth Cassell
  • Carlton J. Briggs
  • Stephen Oroszlan
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Summary

Capsid particles were prepared from equine infectious anemia virus (EIAV) as a model retrovirus for the human immunodeficiency virus (HIV). There is a stepwise cleavage of the nucleocapsid (NC) protein (pll) and integrase (IN) (p32) during incubation of EIAV capsids at 37°C in 10 mM Tris 1 mM EDTA (TE Buffer) at pH 7.6. The viral protease cleaves the NC protein after the first Cys residue of both conserved (C X2 C X4 H X4 C) regions. The p11 → p6 cleavage occurs at the first Cys array. The p6 is then cleaved at the second Cys array, resulting in three main peptide fragments appearing as a 4 KDa band on an SDS gel. The cleavage of a 6 KDa C-terminal fragment from IN starts when all the pll is cleaved to p6, and therefore occurs during the final fragmentation of the NC protein. Capsids from other retroviruses also show NC protein cleavage when incubated under similar conditions. It has been postulated that proteolytic processing of the NC protein occurs in vivo during the early stages of the viral life-cycle and may be required for replication.

Keywords

Human Immunodeficiency Virus Zinc Finger Domain Equine Infectious Anemia Virus Zinc Binding Domain Retrovira1 Protease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Oroszlan, and R.B. Luftig. Retroviral proteinases. in “Current Topics Microb. & Immunol. Retroviruses—Strategies of Replication”, Vol. 157, R. Swanstrom, and P.K. Vogt, eds, Springer-Verlag, Heidelberg, pp. 153–185 (1990).Google Scholar
  2. 2.
    H.R. Gelderblom, E.H.S. Hausmann, M. Ozel, G. Pauli, and M.A. Koch. Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins. Virology 156: 171–176 (1987).PubMedCrossRefGoogle Scholar
  3. 3.
    M.M. Roberts, and S. Oroszlan. The preparation and biochemical characterization of intact capsids of equine infectious anemia virus. Biochem. Biophys. Res. Commun. 160: 486–494 (1989).PubMedCrossRefGoogle Scholar
  4. 4.
    R. Stephens, J.W. Casey, and N.R. Rice. Equine infectious anemia virus gag and poi genes: Relatedness to visna and AIDS virus. Science 231: 589–594 (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    M.A. Gonda. Molecular genetics and structure of the human immunodeficiency virus. J. Electron Micro. Tech. 8, 17–40 (1988).CrossRefGoogle Scholar
  6. 6.
    M.M. Roberts, and S. Oroszlan. The action of retroviral protease in various phases of virus replication. in “Retroviral Proteinases: Maturation and Morphogenesis”, L.H. Pearl, ed., MacMillan Press, London, pp.131–139 (1990).Google Scholar
  7. 7.
    M.M. Roberts, T.D. Copeland, and S. Oroszlan. In situ processing of the retroviral nucleocapsid protein by the viral aspartic proteinase. Protein Engineering, to be submitted (1990).Google Scholar
  8. 8.
    R.L. Karpel, L.E. Henderson, and S. Oroszlan, Interactions of retroviral structural proteins with single-stranded nucleic acids. J. Biol. Chem. 262: 4961–4967 (1987).PubMedGoogle Scholar
  9. 9.
    M.R. Summers, T.L. South, B. Kim, and D.R. Hare. High-resolution structure of an HIV zinc fingerlike domain via a new NMR-based distance geometry approach. Biochemistry 29: 329–340 (1990).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Wlodawer, M. Miller, M. Jaskolski, B.K. Sathyanarayana, E. Baldwin, I.T. Weber, L.M. Selk, L. Clawson, J. Schneider, and S.B.H. Kent. Conserved folding in retroviral protease: Crystal structure of a synthetic HIV-1 protease. Science 245: 616–621 (1989).PubMedCrossRefGoogle Scholar
  11. 11.
    H. Varmus, and P.O. Brown. Retroviruses. in “Mobile DNA”, M. Howe and D. Berg, eds, American Society Microbiology, Washington, DC, pp 53–108 (1989).Google Scholar
  12. 12.
    J.M. Coffin. Retroviridae and Their Replication,in “Virology”, B.N. Fields, D.M. Knipe et al., eds, Raven Press, Ltd., New York, pp 1437–1500 (1990).Google Scholar
  13. 13.
    L. Whetter, D. Archambault, S. Perry, A. Gazit, L. Coggins, A. Yanív, D. Clabough, J. Dahlberg, F. Fuller, and S. Tronick. Equine infectious anemia virus derived from a molecular clone persistently infects horses. J. Virol. 64: 5750–5756 (1990).PubMedGoogle Scholar
  14. 14.
    T.B. Rajavashisth, A.K. Taylor, A. Andalibi, K.L. Svenson, and A.J. Lusis. Identification of a zinc finger protein that binds to the sterol regulatory element. Science 245: 640–643 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    H. Holzer, and P.C. Heinrich. Control of proteolysis. Ann. Rev. Biochem. 49: 63–91 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    E. Sobel, and H.M. Martinez. A multiple sequence alignment program. Nucleic Acids Res. 14: 363–374 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Michael M. Roberts
    • 1
  • Eugene Volker
    • 1
    • 3
  • Terry D. Copeland
    • 1
  • Kunio Nagashima
    • 2
  • M. Beth Cassell
    • 1
  • Carlton J. Briggs
    • 1
  • Stephen Oroszlan
    • 1
  1. 1.Laboratory of Molecular Virology and Carcinogenesis, ABL-Basic Research ProgramNCI-Frederick Cancer Research and Development CenterFrederickUSA
  2. 2.Electron Microscopy/Cell Biology Laboratory, Program Resources, Inc.NCI-Frederick Cancer Research and Development CenterFrederickUSA
  3. 3.Dept. of ChemistryShepherd CollegeShepherdstownUSA

Personalised recommendations