Roles of Nucleocapsid Cysteine Arrays in Retroviral Assembly and Replication: Possible Mechanisms in RNA Encapsidation

  • Robert J. Gorelick
  • Stephen M. NigidaJr.
  • Larry O. Arthur
  • Louis E. Henderson
  • Alan Rein
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


The nucleocapsid (NC) proteins of all retroviruses contain either one or two copies of a sequence motif, C-X2-C-X4-H-X4-C, which has been termed the “cysteine array” or Cys-His box. Studies from several laboratories have shown that mutants in this motif direct the production of virus particles; these particles are structurally normal in many respects, but are either partially or completely deficient in genomic RNA. Further, even when some RNA is encapsidated, the particles are almost completely noninfectious.

We review some of the known properties of these particles and of particles lacking genomic RNA for other reasons. Based on these properties, we propose that only dimeric RNA is encapsidated, and that the cysteine array(s) are involved in a positive selection or “search” for this dimeric RNA during virus assembly. Further speculations on the nature of the protein-RNA interactions in RNA packaging are also presented.


Human Immunodeficiency Virus Type Murine Leukemia Virus Virus Assembly Equine Infectious Anemia Virus Rous Sarcoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adachi, A., Gendelman, H. E., Koenig, S., Folks, T., Willey, R., Rabson, A., Martin, M. A., 1986, Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone, J. Virol., 59: 284291.Google Scholar
  2. Aldovini, A. and Young, R. A., 1990, Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus, J. Virol., 64: 19201926.Google Scholar
  3. Bassin, R. H., Tuttle, N., and Fischinger, P. J., 1971, Rapid cell culture assay for murine leukaemia virus, Nature (London), 229: 564566.Google Scholar
  4. Berg, J. M., 1986, Potential metal-binding domains in nucleic acid binding proteins, Science, 232: 485–487.PubMedCrossRefGoogle Scholar
  5. Bieth, E., Gabus, C., and Darlix, J.-L., 1990, A study of the dimer formation of Rous sarcoma virus RNA and of its effect on viral protein synthesis in vitro, Nucleic Acids Res., 18: 119–127.PubMedCrossRefGoogle Scholar
  6. Canaani, E., Helm, K. V. D., and Duesberg, P., 1973, Evidence for 30–40S RNA as precursor of the 60–70S RNA of Rous sarcoma virus particles, Proc. Natl. Acad. Sci. USA, 72: 401–405.Google Scholar
  7. Cheung, K.-S., Smith, R. E., Stone, M. P., and Joklik, W. K., 1972, Comparison of immature (rapid harvest) and mature Rous sarcoma virus particles, Virology, 50: 851–864.PubMedCrossRefGoogle Scholar
  8. Coffin, J., 1984, Structure of the retroviral genome, in: “RNA Tumor Viruses”, 2nd ed., R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 261–368.Google Scholar
  9. Covey, S. M., 1986, Amino acid sequence homology in gag region of reverse transcribing elements and the coat protein gene of cauliflower mosaic virus, Nucleic Acids Res., 14: 623–633.PubMedCrossRefGoogle Scholar
  10. Dupraz, P., Oertle, S., Meric, C., Damay, P., and Spahr, P.-F., 1990, Point mutations in the proximal Cys-His box of Rous sarcoma virus nucleocapsid protein, J. Virol., 64: 4978–4987.PubMedGoogle Scholar
  11. Ellis, R. W., Defeo, D., Shih, T. Y., Gonda, M. A., Young, H. A., Tsuchida, N., Lowy, D. R., and Scolnick, E. M., 1981, The p21°rc genes of Harvey and Kirsten sarcoma viruses originate from divergent members of a family of normal vertebrate genes, Nature (London), 292: 506–511.CrossRefGoogle Scholar
  12. Evans, R. M. and Hollenberg, S. M., 1988, Zinc fingers: Gilt by association, Cell, 52: 1–3.Google Scholar
  13. Gheysen, D., Jacobs, E., de Foresta, F., Thiriart, C., Francotte, M., Thines, D., and De Wilde, M., 1989, Assembly and release of HIV-1 precursor Pr55m virus-like particles from recombinant baculovirusinfected insect cells, Cell, 59: 103–112.Google Scholar
  14. Gorelick, R. J., Henderson, L. E., Hanser, J. P., and Rein, A., 1988, Point mutants of Moloney murine leukemia virus that fail to package viral RNA: Evidence for specific RNA recognition by a “zinc finger-like” protein sequence, Proc. Natl. Acad. Sci. USA, 85: 8420–8424.Google Scholar
  15. Gorelick, R. J., Nigida, S. M., Jr., Bess, J. W., Jr., Arthur, L. 0., Henderson, L. E., and Rein, A., 1990, Noninfectious human immunodeficiency virus type 1 mutants deficient in genomic RNA, J. Virol., 64: 3207–3211.Google Scholar
  16. Green, L. M. and Berg, J. M., 1990, Retroviral nucleocapsid protein-metal ion interactions: Folding and sequence variants, Proc. Natl. Acad. Sci. USA, 87: 6403–6407.Google Scholar
  17. Henderson, L. E., Copeland, T. D., Sowder, R. C., Smythers, G. W., and Oroszlan, S., 1981, Primary structure of the low-molecular-weight nucleic acid binding proteins of murine leukemia viruses, J. Biol. Chem., 256: 8400–8406.Google Scholar
  18. Jentoft, J. E., Smith, L. M., Fu, X., Johnson, M., and Leis, J., 1988, Conserved cysteine and histidine residues of the avian myeloblastosis virus nucleocapsid protein are essential for viral replication but are not “zinc-binding fingers”, Proc. Natl. Acad. Sci. USA, 85: 7094–7098.Google Scholar
  19. Korb, J., Travnicek, M., and Riman, J., 1976, The oncornavirus maturation process: Quantitative correlation between morphological changes and conversion of genomic virion RNA, Intervirologv, 7: 211224.Google Scholar
  20. Levin, J. G., Grimley, P. M., Ramseur, J. M., and Berezesky, I. K., 1974, Deficiency of 60 to 70S RNA in murine leukemia virus particles assembled in cells treated with actinomycin D, J. Virol., 14: 15 2161.Google Scholar
  21. Levin, J. G. and Seidman, J. G., 1979, Selective packaging of host tRNA’s by murine leukemia virus particles does not require genomic RNA, J Virol., 29: 328–335.PubMedGoogle Scholar
  22. Levin, J.G. and Seidman, J. G., 1981, Effect of polymerase mutations on packaging of primer tRNApro during murine leukemia virus assembly, J. Virol., 38: 403–408.PubMedGoogle Scholar
  23. Mann, R., Mulligan, R. C., and Baltimore, D., 1983, Construction of a retrovirus packaging mutant and its use to produce helper-free defective retroviruses, Cell, 33: 153–159.Google Scholar
  24. Méric, C. and Goff, S. P., 1989, Characterization of Moloney murine leukemia virus mutants with single-amino-acid substitutions in theGoogle Scholar
  25. Cys-His box of the nucleocapsid protein, J. Virol., 63: 1558–1568.Google Scholar
  26. Méric, C., Gouilloud, E., and Spahr, P.-F., 1988, Mutations in rous sarcoma virus nucleocapsid protein p12 (NC): Deletions of Cys-His boxes, J. Virol., 62: 3328–3333.Google Scholar
  27. Méric, C. and Spahr, P.-F., 1986, Rous sarcoma virus nucleic acid-binding protein p12 is necessary for viral 70S RNA dimer formation and packaging J. Virol., 60: 450–459.PubMedGoogle Scholar
  28. Oroszlan, S. and Copeland, T. D., 1985, Primary structure and processing of gag and env gene products of human T-cell leukemia viruses HTLVIcr and HTLV-IATK, in: “Current Topics in Microbiology and Immunology,” P. K. Vogt, ed., Springer-Verlag, New York, pp. 221233.Google Scholar
  29. Ott, D., Friedrich, R., and Rein, A., 1990, Sequence analysis of amphotropic and 10A1 murine leukemia viruses: Close relationship to mink cell focus-inducing viruses, J. Virol., 64: 757–766.Google Scholar
  30. Peters, G.G. and Hu. J., 1980, Reverse transcriptase as the major determinant for selective packaging of tRNA’s into avian sarcoma virus particles, J. Virol., 36:692–700.Google Scholar
  31. Prats, A.-C., Christine, R., Wang, P., Erard, M., Housset, V., Gabus, C., Paoletti, C., and Darlix, J.-L., 1990, cis elements and transacting factors involved in dimer formation of murine leukemia virus RNA, J. Virol., 64: 774–783.Google Scholar
  32. Prats, A. C., Sarih, L., Gabus, C., Litvak, S., Keith, G., and Darlix,J. L., 1988, Small finger protein of avian and mutine retroviruses has nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA, EMBO J., 7: 1777–1783.PubMedGoogle Scholar
  33. Rein, A., 1982, Interference grouping of mutine leukemia viruses: a distinct receptor for the MCF-recombinant viruses on mouse cells, Virology, 120: 251–257.PubMedCrossRefGoogle Scholar
  34. Rein, A. and Bassin, R. H., 1978, Replication-defective ecotropic murine leukemia viruses: detection and quantitation of infectivity using helper-dependent XC plaque formation, J. Virol., 28: 656–660.PubMedGoogle Scholar
  35. Roberts, M. M. and Oroszlan, S., 1989, The preparation and biochemical characterization of intact capsids of equine infectious anemia virus, Biochem. Biophys. Res. Commun., 160: 486–494.Google Scholar
  36. Roberts, W. J., Pan, T., Elliott, J. I., Coleman, J. E., and Williams,K. R., 1989, p10 single-stranded nucleic acid binding protein from mutine leukemia virus binds metal ions via the peptide sequence Cys26-X2-Cys29-X4-His39-X4-Cys39, Biochemistry 28: 10043–10047.Google Scholar
  37. Sawyer, R. C. and Hanafusa, H., 1979, Comparison of the small RNAs of polymerase-deficient and polymerase-positive Rous sarcoma virus and another species of avian retrovirus, J. Virol., 29: 863–871.PubMedGoogle Scholar
  38. Schiff, L. A., Nibert, M. L., and Fields, B. N., 1988, Characterization of a zinc blotting technique: Evidence that a retroviral gag protein binds zinc, Proc. Natl. Acad. Sci. USA, 85: 4195–4199.Google Scholar
  39. Shields, A., Witte, 0. N., Rothenberg, E., and Baltimore, D., 1978, High frequency of aberrant expression of Moloney mutine leukemia virus in clonal infections, Cell, 14: 601–609.Google Scholar
  40. South, T. L., Blake, P. R., Sowder, R. C., III, Arthur, L. 0., Henderson, L. E., and Summers, M. F., 1990, The nucleocapsid protein isolated from HIV-1 particles binds zinc and forms retroviral-type zinc fingers, Biochemistry, 29: 7786–7789.Google Scholar
  41. Stewart, L., Schatz, G. and Vogt, V. M., 1990, Properties of avian retrovirus particles defective in viral protease, J. Virol., 64: 5076–5092.PubMedGoogle Scholar
  42. Stoltzfus, C.M. and Snyder, P. N., 1975, Structure of B77 sarcoma virus RNA: Stabilization of RNA after packaging, J. Virol., 16: 1161–1170.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Robert J. Gorelick
    • 1
  • Stephen M. NigidaJr.
    • 1
  • Larry O. Arthur
    • 1
  • Louis E. Henderson
    • 1
  • Alan Rein
    • 2
  1. 1.AIDS Vaccine ProgramPRI/DynCorpFrederickUSA
  2. 2.Laboratory of Molecular Virology and Carcinogenesis, ABL-Basic Research ProgramNCI-Frederick Cancer Research and Development CenterFrederickUSA

Personalised recommendations