HIV-1 Tat: A Transcriptional Activator that Recognizes a Structured RNA Target

  • Ben Berkhout
  • Kuan-Teh Jeang
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


The human and simian immunodeficiency viruses (HIVs and SIVs) are unique among retroviruses in encoding for many small regulatory proteins in addition to Gag, Pol and Env (reviewed in 1). Although counterpart regulatory proteins are apparently absent or yet to be described for avian and murine retroviruses, HIV greatly depends on the functions of some of these proteins (Tat, Rev, Vif) for its viability (reviewed in 2). Other non-structural proteins (Nef, Vpr, Vpu, and Vpx for HIV-2) have moderating effects and are not absolutely essential for viral propagation in tissue culture.


Human Immunodeficiency Virus Human Immunodeficiency Virus Type Simian Immunodeficiency Virus Upstream Promoter Transcriptional Initiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coffin, J.M. (1990) Retroviridae and their replication. In Virology (ed. Fields, B.N. and Knipe, D.M. ), pp 1437–1500. Raven press, New York.Google Scholar
  2. 2.
    Cullen, B.R. and Greene, W.C. (1990) Functions of the auxiliary gene products of the human immunodeficiency virus type 1. Virology 178, 1–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Dang, C.V. and Lee, W.M.F. (1989) Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, HSP70, and HIV Tat proteins. J. Biol. Chem. 264, 18019–18023.PubMedGoogle Scholar
  4. 4.
    Garcia, J.A., Harrich, D., Pearson, L., Mitsuyasu, R. and Gaynor, R.B. (1988) Functional domains required for tat-induced transcriptional activation of the HIV-1 long terminal repeat. EMBO J. 7, 3143–3147.PubMedGoogle Scholar
  5. 5.
    Hauber, J., Malim, M.H. and Cullen, B.R. (1989) Mutational analysis of the conserved basic domain of human immunodeficiency virus tat protein. J. Virol. 63, 1181–1187.PubMedGoogle Scholar
  6. 6.
    Ruben, S., Perkins, A., Purcell, R., Joung, K., Sia, R., Burghoff, R., Haseltine, W.A. and Rosen, C.A. (1989) Structural and functional characterization of human immunodeficiency virus tat protein. J. Virol. 63, 1–8.PubMedGoogle Scholar
  7. 7.
    Siomi, H., Shida, H., Maki, M. and Hatanaka, M. (1990) Effect of a highly basic region of human immunodeficiency virus Tat protein on nucleolar localization. J. Virol. 64, 1803–1807.PubMedGoogle Scholar
  8. 8.
    Dingwall, C., Ernberg, I., Gait, M.J., Green, S.M., Heaphy, S., Karn, J., Lowe, A.D., Singh, M., Skinner, M.A. and Valerio, R. (1989) Human immunodeficiency virus 1 Tat protein binds trans-activation-responsive region (TAR) RNA in vitro. Proc. Natl. Acad. Sci. USA 86, 6925–6929.CrossRefGoogle Scholar
  9. 9.
    Roy, S., Delling, U., Chen, C-H., Rosen, C.A. and Sonenberg, N. (1990) A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation. Genes Dev. 4, 1365–1373.PubMedCrossRefGoogle Scholar
  10. 10.
    Weeks, K.M., Ampe, C., Schultz, S.C., Steitz, T.A. and Crothers, D.M. (1990). Fragments of the HIV-1 Tat protein specifically bind TAR RNA. Science 249, 1281–1285.PubMedCrossRefGoogle Scholar
  11. 11.
    Subramanian, T., Kuppuswamy, M., Venkatesh, L., Srinivasan, A. and Chinnadurai, G. (1990) Functional substitution of the basic domain of the HIV-1 trans-activator, Tat, with the basic domain of the functionally heterologous Rev. Virology 176, 178–183.CrossRefGoogle Scholar
  12. 12.
    Seigel, L.J., Ratner, L., Josephs, S.F., Derse, D., Feinberg, M.B., Reyes, G.A., O’Brien, S.J. and Wong-Staal, F. (1986) Trans-activation. induced by human Tlymphotropic virus type III (HTLV-III) maps to a viral sequence encoding 58 amino acids and lacks tissue specificity. Virology 148, 226–231.PubMedCrossRefGoogle Scholar
  13. 13.
    Kuppuswamy, M., Subramanian, T., Srinivasan, A. and Chinnadurai, G. (1989) Multiple functional domains of Tat, the transactivator of HIV-1, defined by mutational analysis. Nucl. Acids Res. 17, 3551–3561.PubMedCrossRefGoogle Scholar
  14. 14.
    Frankel, A.D. and Pabo, C.O. (1988) Cellular uptake of the Tat protein from the human immunodeficiency virus. Cell 55, 1189–1193.PubMedCrossRefGoogle Scholar
  15. 15.
    Brake, D.A., Debouck, C. and Biesecker, G. (1990)Identification of an Arg-Gly-Asp (RGD) cell adhesion site in human immunodeficiency virus type 1 transactivator protein, Tat. J. Cell Biol. 111, 1275–1281.Google Scholar
  16. 16.
    Ensoli, B., Barillari, G., Salahuddin, S.Z., Gallo, R.C. and Wong-Staal, F. (1990) Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature 345, 84–86.PubMedCrossRefGoogle Scholar
  17. 17.
    Frankel, A.D., Bredt, D.S. and Pabo, C.O. (1988) Tat protein from human immunodeficiency virus forms a metal-linked dimer. Science 240, 70–73.PubMedCrossRefGoogle Scholar
  18. 18.
    Rice, A.P. and Charlotti, F. (1990) Mutational analysis of the conserved cysteine-rich region of the human immunodeficiency virus type 1 Tat protein. J. Virol. 64, 1864–1868.PubMedGoogle Scholar
  19. 19.
    Rappaport, J., Lee, S-J., Khalili, K. and Wong-Staal, F. (1989) The acidic amino-terminal region of HIV-1 Tat protein constitutes an essential activating domain. New Biol. 1, 101–110.PubMedGoogle Scholar
  20. 20.
    Ptashne, M. (1988) How eucaryotic transcriptional activators work. Nature 335, 683–689.PubMedCrossRefGoogle Scholar
  21. 21.
    Feng, S. and Holland, E. C. (1988) HIV-1 tat trans-activation requires the loop sequence within TAR. Nature 334, 165–167.PubMedCrossRefGoogle Scholar
  22. 22.
    Berkhout, B., Silverman, R.H. and Jeang, K.T. (1989) Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 59, 273–282.PubMedCrossRefGoogle Scholar
  23. 23.
    Muesing, M.A., Smith, D.H., and Capon, D.J. (1987) Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell 48, 691–701.PubMedCrossRefGoogle Scholar
  24. 24.
    Hauber, J. and Cullen, B.R. (1988) Mutational analysis of the trans-activation-responsive region of the human immunodeficiency virus type I long terminal repeat. J. Virol. 62, 673–679.PubMedGoogle Scholar
  25. 25.
    Jakobovits, A., Smith, D.H., Jakobovits, E.B. and Capon, D.J. (1988) A discrete element 3’ of human immunodeficiency virus (HIV-1) and HIV-2 mRNA initiation sites mediates transcriptional activation by an HIV trans-activator. Mol. Cell. Biol. 8, 2555–2561.PubMedGoogle Scholar
  26. 26.
    Berkhout, B. and Jeang, K.T. (1989) Trans-activation of human immunodeficiency virus type 1 is sequence specific for both the single-stranded bulge and loop of the trans-acting-responsive hairpin: a quantitative analysis. J. Virol. 63, 5501–5504.PubMedGoogle Scholar
  27. 27.
    Roy, S., Parkin, N.T., Rosen, C., Itovitch, J. and Sonenberg, N. (1990) Structural requirements for trans-activation of human immunodeficiency virus type 1 long terminal repeat-directed gene expression by Tat: importance of base pairing, loop sequence, and bulges in the Tat-responsive sequence. J. Virol. 64, 1402–1406.PubMedGoogle Scholar
  28. 28.
    Emerman, M., Guyader, M., Montagnier, L., Baltimore, D. and Muesing, M.A. (1987) The specificity of the human immunodeficiency virus type 2 trans-activator is different from that of human immunodeficiency virus type 1. EMBO J. 6, 3755–3760.PubMedGoogle Scholar
  29. 29.
    Berkhout, B., Gatignol, A., Silver, J. and Jeang, K.T. (1990) Efficient trans-activation by the HIV-2 Tat protein requires a duplicated TAR RNA structure. Nuc1. Acids Res. 18, 1839–1846.CrossRefGoogle Scholar
  30. 30.
    Gatignol, A., Kumar, A., Rabson, A. and Jeang, K.T. (1989) Identification of cellular proteins that bind to the human immunodeficiency virus type 1 transactivation-responsive TAR element RNA. Proc. Natl. Acad. Sci. USA 86, 7828–7832.PubMedCrossRefGoogle Scholar
  31. 31.
    Gaynor, R., Soultanakis, E., Kuwabara, M., Garcia, J. and Sigman, D.S. (1989) Specific binding of a Hela cell nuclear protein to RNA sequences in the human immunodeficiency virus trans-activating region. Proc. Natl. Acad. Sci. USA 86, 4858–4862.PubMedCrossRefGoogle Scholar
  32. 32.
    Marciniak, R.A., Garcia-Blanco, M.A. and Sharp, P.A. (1990) Identification and characterization of a HeLa nuclear protein that specifically binds to the transactivation-response (TAR) element of human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 87, 3624–3628.PubMedCrossRefGoogle Scholar
  33. 33.
    Graham, G.J. and Maio, J.J. (1990) RNA transcripts of the human immunodeficiency virus transactivation response element can inhibit action of the viral transactivator. Proc. Natl. Acad. Sci. USA 87, 5817–5821.PubMedCrossRefGoogle Scholar
  34. 34.
    Hart, C.E., Ou, C-Y., Galphin, J.C., Moore, J., Bachler, L.T., Wasmuth, J.J., Petteway, S.R. and Schochetman, G. (1989) Human chromosome 12 is required for HIV-1 expression in human-hamster hybrid cells. Science 246, 488–491.PubMedCrossRefGoogle Scholar
  35. 35.
    Newstein, M., Stanbridge, E.J., Casey, G. and Shank, P.R. (1990) Human chromosome 12 encodes a species-specific factor,which increases human immunodeficiency virus type 1 Tat-mediated trans activation in rodent cells. J. Virol. 64, 4565–4567.PubMedGoogle Scholar
  36. 36.
    Nelbock, P., Dillon, P.J., Perkins, A. and Rosen, C.A. (1990) A cDNA for a protein that interacts with the human immunodeficiency virus Tat transactivator. Science 248, 1650–1653.PubMedCrossRefGoogle Scholar
  37. 37.
    Kao, S.Y., Calman, A.F., Luciw, P.A. and Peterlin, B.M. (1987) Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330, 489–493.PubMedCrossRefGoogle Scholar
  38. 38.
    Selby, M.J., Bain, E.S., Luciw, P.A. and Peterlin, B.M. (1989) Structure, sequence, and position of the stem-loop in TAR determine transcriptional elongation by tat through the HIV-1 long terminal ‘repeat. Genes Dev. 3, 547–558.PubMedCrossRefGoogle Scholar
  39. 39.
    Barik, S., Ghosh, B., Whalen, W., Lazinski, D. and Das, A. (1987) An antitermination protein engages the elongating transcription apparatus at a promoter-proximal recognition site. Cell 50, 885–899.PubMedCrossRefGoogle Scholar
  40. 40.
    Horwitz, R.J., Li, J. and Greenblatt, J. (1987) An elongation control particle containing the N gene transcriptional antiterminator protein of bacteriophage lambda. Cell 51, 631–641.Google Scholar
  41. 41.
    Platt, T. (1986) Transcription termination and the regulation of gene expression. Annu. Rev. Biochem. 55, 3390–372.CrossRefGoogle Scholar
  42. 42.
    Landick, R. and Yanofsky, C. (1987) Transcriptional attenuation. In Escherichia coli and Salmonella typhimurium: Cellular and molecular biology (ed. F.C. Neihardt, J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter and H.E. Umbarger ) pp. 1276–1301. American Society for Microbiology, Washington, D.C.Google Scholar
  43. 43.
    Laspia, M.F., Rice, A.P. and Matthews, M.B. (1989) HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell 59, 283–292.PubMedCrossRefGoogle Scholar
  44. 44.
    Toohey, M.G. and Jones, K.A. (1989) In vitro formation of short RNA polymerase II transcripts that terminate within the HIV-1 and HIV-2 promoter-proximal downstream regions. Genes Dev. 3, 265–282.PubMedCrossRefGoogle Scholar
  45. 45.
    Selby, M.J. and Peterlin, B.M. (1990) Trans-activation by HIV-1 Tat via a heterologous RNA binding protein. Cell 62, 769–776.PubMedCrossRefGoogle Scholar
  46. 46.
    Jeang, K.T., Shank, P.R. and Kumar, A. (1988) Transcriptional activation of homologous viral long terminal repeats by the human immunodeficiency virus type 1 or the human T-cell leukemia virus type 1 tat proteins occurs in the absence of de novo protein synthesis. Proc. Natl. Acad. Sci. USA 85, 8291–8295.PubMedCrossRefGoogle Scholar
  47. 47.
    Southgate, C., Zapp, M.L. and Green, M.R. (1990) Activation of transcription by HIV-1 Tat protein tethered to nascent RNA through another protein. Nature 345, 640–642.PubMedCrossRefGoogle Scholar
  48. 48.
    Sharp, P.A. and Marciniak, R.A. (1989) HIV TAR: an RNA enhancer? Cell 59, 229–230.PubMedCrossRefGoogle Scholar
  49. 49.
    Berkhout, B., Gatignol, A., Rabson, A.B. and Jeang, K.T. (1990) TAR-independent activation of the HIV-1 LTR: evidence that Tat requires’ specific regions of the promoter. Cell 62, 7257–767.CrossRefGoogle Scholar
  50. 50.
    Rosen, C.A., Sodroski, J.G. and Haseltine, W.A. (1985) The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 41, 813–823.PubMedCrossRefGoogle Scholar
  51. 51.
    Peterlin, B.M., Luciw, P.A., Barr, P.J. and Walker, M.D. (1986) Elevated levels of mRNA can account for the trans-activation of human immunodeficiency virus (HIV). Proc. Natl. Acad. Sci. USA 83, 9734–9738.PubMedCrossRefGoogle Scholar
  52. 52.
    Kozak, M. (1989) The scanning model for translation: an update. J. Cell. Biol. 108, 229–241.PubMedCrossRefGoogle Scholar
  53. 53.
    Parkin, N.T., Cohen, E.A., Darveau, A., Rosen, C., Haseltine, W. and Sonenberg, N. (1988) Mutational analysis of the 5’ noncoding region of human immnnodeficiency virus type 1: effects of secondary structure on translation. EMBO J. 7, 2831–2837.PubMedGoogle Scholar
  54. 54.
    SenGupta, D.N., Berkhout, B., Gatignol, A., Zhou, A. and Silverman, R.H. (1990) Direct evidence for translational regulation by HIV-1 leader RNA and Tat protein. Proc. Natl. Acad. Sci. USA,in press.Google Scholar
  55. 55.
    SenGupta, D.N. and Silverman, R.H. (1989) Activation of interferon-regulated, dsRNA-dependent enzymes by HIV-1 leader RNA. Nucl. Acids Res. 17, 969–978.PubMedCrossRefGoogle Scholar
  56. 56.
    Edery, I., Petryshyn, R. and Sonenberg, N. (1989) Activation of double-stranded RNA-dependent kinase (dsI) by the TAR region of HIV-1 mRNA: a novel translational control mechanism. Cell 56, 303–312.PubMedCrossRefGoogle Scholar
  57. 57.
    Cullen, B.R. (1986) Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell 46, 973–982.PubMedCrossRefGoogle Scholar
  58. 58.
    Braddock, M., Chambers, A., Wilson, W., Esnouf, M.P., Adams, S.E., Kingsman, A.J. and Kingsman, S.M. (1989) HIV-1 Tat “activates” presynthesized RNA in the nucleus. Cell 58, 269–279.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Ben Berkhout
    • 1
  • Kuan-Teh Jeang
    • 1
  1. 1.Laboratory of Molecular Microbiology National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations