Drugs of Abuse and Experimental Autoimmune Diseases

  • William D. Lyman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 288)


Despite efforts to treat inflammatory demyelinating diseases effectively, present therapies fall short of ideal goals (1,2). With respect to multiple sclerosis (MS), a disease of this type (3) that affects the human central nervous system (CNS), current therapies run the gamut from the use of immunosuppressive and synthetic drugs (4–7) to plasmapheresis (8) and to hyperbaric oxygen (9).


Multiple Sclerosis Experimental Autoimmune Encephalomyelitis Myelin Basic Protein Experimental Allergic Encephalomyelitis Chronic Relapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. H. Silberberg, Clinical trials in multiple sclerosis: Problems and opportunities, Ann. NX Acad. Sd. 436:418 (1984).CrossRefGoogle Scholar
  2. 2.
    , D. E. Mc-Farlin, Treatment of multiple sclerosis, New Eng. J. Med. 308:215 (1983).CrossRefGoogle Scholar
  3. 3.
    , U, Traugott and C. S. Raine, The neurology of myelin diseases, in: “Myelin,” P. Morell, ed., Plenum Press, New York, (1984).Google Scholar
  4. 4.
    , A, Basten, J. D. Pollard, G. J. Stewart, J. A. Frith, J. G. Mc-Leod, J. C. Walsh, R. Garrick, and C. M. Van Brink, Transfer factor in treatment of multiple sclerosis, Lancet 2:931 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    , L. F. Kastrukoss, D. R. Mc-Lean, and T. A. Mc-Pherson, Multiple sclerosis treated with antithymocyte globulin: A five year followup, J. Can. Sci. Neurol. 5:175 (1978).Google Scholar
  6. 6.
    , M. B. Bornstein, A. I. Miller, V. Spada, D. Teitelbaum, R. Arnon, and M. Sela, Multiple sclerosis: trail of a synthetic polypeptide, Ann. Neurol. 11:317 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    G, W. Ellison and C. N. Myers, Immunosuppressive drugs in multiple sclerosis: Pro and Con, Neurology 30:28 (1980).PubMedGoogle Scholar
  8. 8.
    H. L. Weiner and D. M. Dawson, Plasmapheresis in multiple sclerosis: Preliminary study, Neurology 30:1029 (1980).PubMedGoogle Scholar
  9. 9.
    B. H. Fischer, M. Marks, and T. Reich, Hyperbaric-oxygen treatment of multiple sclerosis. A randomized, placebo-controlled, double-blind study, New Eng. J. Med. 308:181 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    D. E. McFarlin and H. F. Mc-Farland, Multiple sclerosis, Part 1, New Eng. J. Med. 307:1183 (1980).CrossRefGoogle Scholar
  11. 11.
    O. Abramsky, R. P. Lisak, D. H. Silberberg, and D. E. Pleasure, Antibodies to Oligodendroglia in patients with multiple sclerosis, New Eng. I. Med. 297:1207 (1977).CrossRefGoogle Scholar
  12. 12.
    U. Traugott C. S. Raine, Anti-oligodendrocyte-antibodies in cerebrospinal fluid of multiple sclerosis and other neurologic diseases, Neurology 30:40 (1981).Google Scholar
  13. 13.
    P. G. E. Kennedy, P.G.E. and Oisak, R.P.: A search for antibodies against glial cells in the serum and cerebrospinal fluid of patients with multiple sclerosis and Guillain-Barre Syndrome, J. Neurol. Sci. 44:125 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    G. Schmid, G. Thomas, K. Hempel, and W. Gruninger, Radioimmunological determination of myelin basic protein (MBP) and MBP antibodies, Eur. Neurol. 12:173 (1974).PubMedCrossRefGoogle Scholar
  15. 15.
    R. P. Lisak, Multiple sclerosis: Evidence of immunopathogenesis, Neurology30:99 (1980).PubMedGoogle Scholar
  16. 16.
    J. H. Carson, E. Barbarese, P. E. Braun, and T. A. Mc-Pherson, Components in multiple sclerosis cerebrospinal fluid that are detected by radioimmunoassay for myelin basic protein, Proc. Natl. Acad. Sci. USA75:1976 (1976).CrossRefGoogle Scholar
  17. 17.
    R. M. Bashir and J. N. Whitaker, Molecular features of immunoreactive myelin basic protein in cerebrospinal fluid of persons with multiple sclerosis, Ann. Neurol. 7:50 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    H. S. Panitch, C. J. Hooper, and K. P. Johnson, CSF antibody to myelin basic protein: Measurement in patients with multiple sclerosis and subacute sclerosing panencephalitis, Arch. Neurol 37:93 (1980).CrossRefGoogle Scholar
  19. 19.
    U. Traugott and C. S. Raine, Anti-oligodendrocyte-antibodies in cerebrospinal fluid of multiple sclerosis and other neurologic diseases, Neurology 31:240 (1981).Google Scholar
  20. 20.
    J. W. Prineas and C. S. Raine, Electron microscopy and immunoperoxidase studies of early multiple sclerosis lesions, Neurology (Minneap) 26 (Supp) 29 (1976).PubMedGoogle Scholar
  21. 21.
    C. S. Raine, L. C. Scheinberg, and J. M. Waltz, Multiple sclerosis: Oligodendrocyte survival and proliferation in an active established lesion, Lab. Invest. 45:534 (1981).PubMedGoogle Scholar
  22. 22.
    P. K. Coyle, R. L. Hirsch, P. O’Donnell, B. R. Brooks, S. R. Cohen, R. T. Johnson, and J. S. Wlinshy, Cerebrospinal fluid lymphocyte populations and immune complexes in active multiple sclerosis, Lancet 2:229 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    J. P. Antel, D. P. Richman, M. E. Medof, and B. G. W. Arnason, Lymphocyte function and the role of regulator cells in multiple sclerosis, Neurology(Minneap) 28:106 (1978).Google Scholar
  24. 24.
    D. Antoli, L. Moretta, R. Lisak, D. Gilden, and H. Koprowski, Imbalances in T cell subpopulations in multiple sclerosis patients, J. Immunol. 120:1369 (1978).Google Scholar
  25. 25.
    J. R. Huddlestone and M. B. A. Oldstone, T suppressor (TG) lymphocytes fluctuate in parallel with changes in the clinical course of patients with multiple sclerosis, J. Immunol. 123:1614 (1979).Google Scholar
  26. 26.
    A. Compston, Lymphocyte subpopulations in patients with multiple sclerosis, I. Neurol. Neurosurg. Psych. 46:105 (1983).CrossRefGoogle Scholar
  27. 27.
    F. Mokhtarian, D. E. McFarlin, and C. S. Raine, Adoptive transfer of myelin basic protein-sensitized T cells produces chronic relapsing demyelinating disease in mice, Nature 309:356 (1984).PubMedCrossRefGoogle Scholar
  28. 28.
    C. S. Raine and U. Traugott, Experimental autoimmune demyelination. Chronic relapsing models and their therapeutic implications for multiple sclerosis, Ann. NY Acad. Sci. 436:33, (1985).CrossRefGoogle Scholar
  29. 29.
    A. Brown, D. E. McFarlin, and C. S. Raine, The chronologic neuropathology of relapsing experimental allergic encephalomyelitis in the mouse, Lab. Invest. 46:171 (1982).PubMedGoogle Scholar
  30. 30.
    L. Ortiz-Ortiz and W. O. Weigle, Activation of effector cells in experimental allergic encephalomyelitis by interleukin 2 (IL2), J. Immunol. 128:1545 (1982).PubMedGoogle Scholar
  31. 31.
    S. L. Hauser, H. L. Weiner, A. K. Bhan, M. E. Shapiro, M. Che, W. R. Aldrich, and N. L. Latvin, Lyt-1 cells mediate acute murine experimental allergic encephalomyelitis.Google Scholar
  32. 32.
    H. Wekerle, H.: The lesion of acute experimental autoimmune encephalomyelitis: Isolation and membrane phenotypes of perivascular infiltrates from encephalitic rat brain white matter, Lab. Invest. 51:199 (1984).PubMedGoogle Scholar
  33. 33.
    U. Traugott, J. Shevach, S. Chiba, H. Stone, and C. S. Raine, Acute experimental allergic encephalomyelitis: Identification and dynamics of T and B cells within the central nervous system, Cell. Immunol. 68:261 (1982).PubMedCrossRefGoogle Scholar
  34. 34.
    S. Sriram and L. Steinman, Anti I-A antibody suppresses active encephalomyelitis: Treatment model for diseases linked to IR genes, J. Exp. Med. 158:1362 (1983).PubMedCrossRefGoogle Scholar
  35. 35.
    L. E. Hollister, Health aspects of cannabis, Pharm. Rev. 38:1 (1986).PubMedGoogle Scholar
  36. 36.
    A. E. Munson and K. O. Fehr, Immunological effects of cannabis, in: “Adverse Health and Behavioral Consequences of Cannabis Use,” K.O. Fehr and H. Kalant, eds., Addition Research Foundation, Toronto, (1983).Google Scholar
  37. 37.
    S. G. Bradley, A. E. Mussnson, W. L. Dewey, and L. S. Harris, Enhanced susceptibility of mice to combination of delta-9-tetrahydrocannabinol and live or killed gram negative bacteria, Infect. Immun. 17:325 (1977).PubMedGoogle Scholar
  38. 38.
    P. S. Morahan, P. C. Klykken, S. H. Smith, L. S. Harris, and A. E. Munson, Effects of cannabinoids on host resistance to Listeria monocytogenes and Herpes simplex virus, Infect. Immun. 23:670 (1979).PubMedGoogle Scholar
  39. 39.
    H. Ruiz and M. J. Torres-Anjel, Effect of cannabinoids on the immune response of rabbits to Bordetella bronchiseptica antigen, Rev. Lationam. Microbiol. 24:241 (1982).Google Scholar
  40. 40.
    B. R. Martin, Cellular effects of cannabinoids, Pharm. Rev. 38:45 (1986).PubMedGoogle Scholar
  41. 41.
    G. G. Nahas, B. Desoize, J. Hsu, A. Morishima, Inhibitory effects of delta-9-tetrahydrocannabinol on nucleic acid synthesis and proteins in cultured lymphocytes, in: “Marihuana: Chemistry, biochemistry, and cellular effects,” G. G. Nahas, eds., Springer, New York, (1976).Google Scholar
  42. 42.
    S. S. Lefkowitz and C. Y. Chiang, Effects of delta-9-tetrahydrocannabinol, cannabinol and cannabidiol on the immune system in mice. I. In vivo investigation of the primary and secondary immune response, Pharmacol. 26:1 (1983).CrossRefGoogle Scholar
  43. 43.
    W. O. Baczynsky and A. M. Zimmerman, Effects of delta-9-tetrahydro-cannabinol, cannabinol and cannabidiol on the immune system in mice. I. In vivo investigation of the primary and secondary immune response, Pharmacol 26:1 (1983).CrossRefGoogle Scholar
  44. 44.
    R. J. Lau, D. G. Tubergen, M. Barr, E. F. Doino, N. Benowitz, and R. T. Jones, Phytohemagglutinin-induced lymphocyte transformation in humans receiving delta-9-tetrahydrocannabinol, Science 192:805 (1976).PubMedCrossRefGoogle Scholar
  45. 45.
    V. Patel, M. Borysenko, M. S. Kumar, and W. J. Millard, Effects of acute and subchronic delta-9-tetrahydrocannabinol administration on the plasma catecholamine, beta-endorphin, and corticosterone levels and splenic natural killer cell activity in rats, Proc. Soc. Exp. Biol. Med. 180:400 (1985).PubMedGoogle Scholar
  46. 46.
    C. C. Gaul and A. Mellors, Delta-9-tetrahydrocannabinol and decreased macrophage migration inhibition activity, Res. Commun. Chem. Pathol. Pharmacol. 10:559 (1975).PubMedGoogle Scholar
  47. 47.
    R. W. Steger, L. DePaolo, R. H. Asch, and A. Y. Silverman, Interactions of delta-9-tetrahydrocannabinol with hypothalamic neurotransmitters controlling luteinizing hormone and prolactin release, Neuroendocrinol. 37:361 (1983).CrossRefGoogle Scholar
  48. 48.
    C. G. Smith, Effects of marijuana on neuroendocrine function, Natl. Inst. Drug Abuse Res. Monogr. Ser. 31:120 (1980).Google Scholar
  49. 49.
    B. Biswas, G. Deb, and J. J. Ghosh, Changes in rat adrenal medulla following delta-9-tetrahydrocannabinol treatment. A histochemical study, Acta Endocrinol. 80:329 (1975).PubMedGoogle Scholar
  50. 50.
    S. Dalterio, A. Bartke, and D. Mayfield, Delta-9-tetrahydrocannabinol increase plasma testosterone concentrations in mice, Science 213:581 (1981).PubMedCrossRefGoogle Scholar
  51. 51.
    H. N. Claman, Glucocorticosteroids I: Anti-inflammatory mechanisms, Hospit. Prac. 42:123 (1983).Google Scholar
  52. 52.
    D. Benseman and A. L. Gascon, Effect of delta-9-tetrahydrocannabinol on the distribution uptake and release of catecholamine in rats, Rev. Can. Biol. 33:269 (1974).Google Scholar
  53. 53.
    E. A. Golmuntz, C. F. Brosnan, and W. T. Norton, Prazosin treatment suppresses edema in both active and passively transferred experimental autoimmune encephalomyelitis in the Lewis rat, J. Immunol. (submitted 1986).Google Scholar
  54. 54.
    I. G. Karniol, I. Shirakawa, R. N. Takahashi, E. Knobel, and R. E. Musty, Effects of delta-9-tetrahydrocannabinol and cannabinol in man, Pharmacol. 13:502 (1975).CrossRefGoogle Scholar
  55. 55.
    D. J. Petro and C. Ellenberger, Treatment of human spasticity with delta-9-tetrahydrocannabinol, J. Clin. Pharmacol. 21:4135 (1981).Google Scholar
  56. 56.
    D. B. Clifford, Tetrahydrocannabinol for tremor in multiple sclerosis, Ann. Neurol. 13:669 (1983).PubMedCrossRefGoogle Scholar
  57. 57.
    P. C. Dowling and S. D. Cook, Role of infection in Guillain-Barre syndrome: Laboratory confirmation of Herpes viruses in 41 cases, Ann. Neurol. 9:44 (1981).PubMedCrossRefGoogle Scholar
  58. 58.
    S. E. Hogg, D. E. Kobrin, and B. S. Schoenberg, The Guillain-Barre syndrome: Epidemiologic and clinical features, J. Chronic Dis. 32:227 (1979).PubMedCrossRefGoogle Scholar
  59. 59.
    B. H. Waksman and R. D. Adams, Allergic neuritis: An experimental disease of rabbits induced by the injection of peripheral nervous tissue and adjuvants, J. Exp. Med. 102:213 (1955).PubMedCrossRefGoogle Scholar
  60. 60.
    C. F. Brosnan, W. D. Lyman, F. A. Tansey, and T. H. Carter, Quantitation of mast cells in experimental allergic neuritis, J. Neuropathol. Exp. Neurol. 44:196 (1985).CrossRefGoogle Scholar
  61. 61.
    U. L. Luthra, H. Rosenkrantz, I. A. Heyman, and M. C. Braude, Differential neurochemistry and temporal pattern in rats treated orally with delta-9-tetrahydrocannabinol for periods up to six months, Toxicol. Appl. Pharmacol. 32:418 (1975).PubMedCrossRefGoogle Scholar
  62. 62.
    G. I. Fujimoto, G. A. Morrill, M. E. O’Connell, A B. Kostellow, and G. Retura, Effects of cannabinoids given orally and reduced appetite on the male rat reproductive system, Pharmacol. 24:303 (1982).CrossRefGoogle Scholar
  63. 63.
    W. D. Lyman, G. A. Roth, F.-C. Chiu, C. F. Brosnan, M. B. Bornstein, and C. S. Raine, Antigen-specific T cells mediate central nervous system demyelination in vitro ,Cell. Immunol. (in press 1986).Google Scholar
  64. 64.
    A. S. Kadish, F. A. Tansey, A. S. Yu, A. T. Doyle, and B. R. Bloom, Interferon as a mediator of human lymphocyte suppression, J. Exp. Med. 151:637 (1981).CrossRefGoogle Scholar
  65. 65.
    P. Y. Paterson, E. D. Day, and C. C. Whitacre, Neuroimmunologic diseases: Effector cell responses and immunoregulatory mechanisms, Immunol. Rev. 55:89 (1981).PubMedCrossRefGoogle Scholar
  66. 66.
    U. Traugott, E. Shevach, J. Chiba, S. H. Stone, and C. S. Raine, Chronic relapsing experimental allergic encephalomyelitis: Identification and dynamics of T and B cells within the central nervous system, Cell. Immunol. 68:61 (1982).CrossRefGoogle Scholar
  67. 67.
    H. Lassman, K. Kitz, and H. M. Wisniewski, Chronic relapsing experimental allergic encephalomyelitis in rats and guinea pigs -a comparison, in: Search for the Cause of Multiple Sclerosis and Other Chronic Diseases of the Central Nervous System, A. Boese, ed., Verlag Chemie, Florida (1980).Google Scholar
  68. 68.
    C. S. Raine, L. B. Barnett, A. Brown, T. Behar, and D. E. McFarlin, Neuropathology of experimental allergic encephalomyelitis in inbred strains of mice, Lab. Invest. 43:150 (1980).PubMedGoogle Scholar
  69. 69.
    U. K. Laemmli and M. Favre, Maturation of the head of bacteriophage T4, J. Mol. Biol. 80:575 (1973).PubMedCrossRefGoogle Scholar
  70. 70.
    W. T. Norton and S. E. Poduslo, Myelination in rat brain: Method of myelin isolation, J. Neurochem. 21:749 (1973).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • William D. Lyman
    • 1
  1. 1.Departments of Pathology and NeuroscienceAlbert Einstein College of MedicineBronxUSA

Personalised recommendations