Interaction of Delta-9-Tetrahydrocannabinol with Herpesviruses and Cultural Conditions Associated with Drug-Induced Anti-Cellular Effects

  • Gerald Lancz
  • Steven Specter
  • H. Keith Brown
  • John F. Hackney
  • Herman Friedman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 288)


Delta-9-tetrahydrocannabinol (THC) is a small molecular weight lipophilic substance which is the primary psychoactive ingredient present in marijuana. This three-ringed molecule has been shown to bind to serum lipoproteins and is believed to exert much of its psychoactive effects by its ability to bind to membranes of cells in the central nervous system (1). The mechanism by which THC exerts psychoactive activity is unknown.


Glutamine Synthetase Herpes Simplex Virus Type Growth Inhibitory Effect Glutamine Synthetase Activity Buoyant Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. R. Martin, Cellular effects of cannabinoids, Pharmacol. Rev. 38:45 (1986).PubMedGoogle Scholar
  2. 2.
    B. E. Juel-Jensen, Brit. Med. J. iv: 296 (1972).CrossRefGoogle Scholar
  3. 3.
    P. S. Morahan, P. C. Klykken, S. H. Smith, L. S. Harris, and A. E. Munson, Effects of cannabinoids on host resistance to Listeria monocytogenes and herpes simplex virus, Infect. Immun. 23:670 (1979).PubMedGoogle Scholar
  4. 4.
    R. D. Blevins and M. P. Dumic, The effect of 9-tetrahydrocannabinol on herpes simplex virus replication, J.gen. Virol. 49:427 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    G. A. Cabral, P. J. McNerney, and E. M. Mishkin, tetrahydrocannabinol enhances release of herpes simplex virus type 2, J. gen. Virol. 67:2017 (1986).PubMedCrossRefGoogle Scholar
  6. 6.
    G. A. Cabral, P. J. McNerney, and E. M. Mishkin, Effect of micromolar concentrations of delta-9-tetrahydrocannabinol on herpes simplex virus type 2 replication in vitro, J. Toxicol. Envir. Health. 21:277 (1987).CrossRefGoogle Scholar
  7. 7.
    R. D. Blevins and J. D. Regan, Delta-9-tetrahydrocannabinol: Effect on macromolecular synthesis in human and other mammalian cells, ArchToxicol. 35:127 (1976).PubMedCrossRefGoogle Scholar
  8. 8.
    M. J. Mon, R. L. Jansing, S. Doggett, J. L. Stein, and G. S. Stein, Influence of delta-9-tetrahydrocannabinol on cell proliferation and macromolecular biosynthesis in human cells, Biochem. Pharmacol. 27:1759 (1978).PubMedCrossRefGoogle Scholar
  9. 9.
    M. J. Mon, A. E. Haas, J. L. Stein and G. S. Stein, Influence of psychoactive and nonpsychoactive cannabinoids on cell proliferation and macromolecular biosynthesis in human cells, Biochem. Pharmacol. 30:31 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    S. L. Palmer, Effects of 9-tetrahydrocannabinol on growth, morphological characteristics, macromolecular synthesis and nucleotide pools of HeLa-S3 cells, Ph.D. Dissertation, University of Toronto (1981).Google Scholar
  11. 11.
    G. J. Lancz, Herpes simplex viruses types 1 and 2: Type and strain specific characteristics affecting virus plaque formation, Archiv. ges. Virusforsch.46:36 (1974).CrossRefGoogle Scholar
  12. 12.
    G. J. Lancz, and J. J. Bradstreet, pH-mediated inhibition of the cell to cell spread of herpes simplex virus infection, Arch. Virol. 52:37 (1976).PubMedCrossRefGoogle Scholar
  13. 13.
    R. Laskov, G. Lancz, N. H. Ruddle, K. M. McGrath, S. Specter, T. Klein, J. Djeu, and H. Friedman, Production of tumor necrosis factor (TNF alpha) and lymphotoxin (TNF beta) by murine pre-B and B cell lymphomas, J. Immunol. (in press, 1990).Google Scholar
  14. 14.
    R. J. Ash, Butyrate-induced reversal of herpes simplex virus restriction in neuroblastoma cells, Virology. 155:584 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    G. J. Lancz, Physical integrity of herpes simplex virus following thermal inactivation, Arch. Virol. 64:3755 (1980).CrossRefGoogle Scholar
  16. 16.
    G. J. Lancz, B. A. Hulick, R. J. Grasso, and L. Skinner, Glucocorticoid mediated establishment of an antiviral state coincident with other gluco-corticoid-induced biochemical activities in L929 cells, J. gen. Virol. 66:2249 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    G. J. Lancz, Effect of pH on the kinetics of herpes simplex virus inactivation at 36°C, Virology. 75:488 (1976).PubMedCrossRefGoogle Scholar
  18. 18.
    G. Lancz, and J. Sample, Thermal-pH inactivation of herpes simplex virus: Interdependence of the medium composition and the pH of the rate of virus inactivation, Arch. Virol. 84:141 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Sarmiento, M. Haffey, and P. G. Spear, Membrane proteins specified by herpes simplex viruses. III Role of glycoprotein VP 7 (B 2) in virion infectivity, J. Virol. 29:1149 (1979).PubMedGoogle Scholar
  20. 20.
    M. W. Ligas, and D. C. Johnson, A herpes simplex virus mutant in which glycoprotein D sequences are replaced by ß-galactosidase sequences binds to but is unable to penetrate into cells, J. Virol. 62:1486 (1988).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Gerald Lancz
    • 1
  • Steven Specter
    • 1
  • H. Keith Brown
    • 2
  • John F. Hackney
    • 3
  • Herman Friedman
    • 1
  1. 1.Department of Medical Microbiology and ImmunologyUniversity of South Florida College of MedicineTampaUSA
  2. 2.Department of AnatomyUniversity of South Florida College of MedicineTampaUSA
  3. 3.Department of Pharmacology and TherapeuticsUniversity of South Florida College of MedicineTampaUSA

Personalised recommendations