The Effects of Canthaxanthin on JB/MS Melanoma Growth During Retroviral Pathogenesis Induced by LP-BM5 Murine Leukemia Virus

  • Dennis S. Huang
  • Ronald Ross Watson
  • Guan-Jie Chen
  • Bernhard Watzl
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 288)


AIDS (Acquired Immune Deficiency Syndrome) is the end stage of disease initiated in man by infection with HIV-1 (Human Immunodeficiency Virus) and related viruses. Progression from retroviral infection to AIDS can take years, and may be influenced by immunosuppressive cofactors including drugs of abuse (1,2) and immunostimulatory ones like nutrients (3,4). The role of such compounds in progression to AIDS is difficult to study in humans because of ethical, economical and logistical considerations. While HIV infection has been possible in chimpanzees, it has produced little pathogenesis (6). To investigate simultaneously the effects of immunostimulatory compounds and retroviral infection, it would be advantageous to use a non-primate model.


Infected Mouse Immune Deficiency Syndrome Flat Bottom Tissue Culture Plate Profound Immunosuppression Bottom Tissue Culture Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. R. Watson, Immunomodulation by Alcohol: A Cofactor in Development of AIDS After Retrovirus Infection, in: “Cofactors in HIV-I Infection and AIDS,” CRC Press (1989).Google Scholar
  2. 2.
    R. R. Watson and C. L. Wallace, Drugs of Abuse as Cofactors in the Progression of HIV Infection to AIDS, in: “Cofactors in HIV-1 Infection and AIDS,” CRC Press (1989).Google Scholar
  3. 3.
    T. K. Leonard-Green and R. R. Watson, The AIDS-Immunocompetence-Nutrition Infection Cycle, in: “Cofactors in HIV-I Infection and AIDS,” CRC Press (1989).Google Scholar
  4. 4.
    S. Moriguchi, M. Kohge, Y. Kishino, and R. R. Watson, In vitro effect of retinol and 13-cis retinoic acid on cytotoxicity of human monocytes, Nutr. Res. 8:255 (1988).CrossRefGoogle Scholar
  5. 5.
    R. R. Watson, Murine models for Acquired Immune Deficiency Syndrome, Life Sci. 44:i (1989).CrossRefGoogle Scholar
  6. 6.
    L. A. Salzman, “Animal Models of Retrovirus Infection and Their Relationship to AIDS,” Academic Press (1986).Google Scholar
  7. 7.
    R. R. Watson, M. D. Yahya, M. R. Darban, and R. H. Prabhala, Enhanced survival by vitamin A supplementation during a retrovirus infection causing murine AIDS, Life Sci. 43:xii (1988).CrossRefGoogle Scholar
  8. 8.
    R. R. Watson, Minireview of murine models for Acquired Immune Deficiency Syndrome, life Sci. 44:3 (1989).CrossRefGoogle Scholar
  9. 9.
    D. E. Mosier, R. A. Yetter, and H. C. Morse III, Retroviral induction of acute lymphoproliferative disease and profound immunosuppression in adult C57BL/6 mice, J. Exp, Med 161:766 (1985).CrossRefGoogle Scholar
  10. 10.
    D. E. Mosier, Animal models for retrovirus-induced immunodeficiency disease, Immunol. Invest. 15:233 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    D. E. Mosier, R. A. Yetter, and H. C. Morse III, Functional T-lymphocytes are required for a murine retrovirus-induced immunodeficiency disease (MAIDS), J. Exp, Med. 165:1737 (1987).CrossRefGoogle Scholar
  12. 12.
    R. M. L. Buller, R. A. Yetter, T. N. Fredrickson, and H. C. Morse III, Abrogation of resistance to severe mouse pox in C57BL/6 mice infected with LP-BM5 murine leukemia viruses, J. Virology. 61:383 (1987).PubMedGoogle Scholar
  13. 13.
    S. P. Klinken, T. N. Fredrickson, J. W. Hartley, R. A. Yetter, and H. C. Morse III, Evaluation of B cell lineage lymphomas in mice with a retrovirus-induced immunodeficiency syndromes, MAIDS, J. Immunol. 140: 1123 (1988).Google Scholar
  14. 14.
    M. I. Luster, A. E. Munson, P. T. Thomas, M. P. Holsapple, J. D. Fenters, K. L. White Jr., L. D. Lauer, D. R. Germolee, G. J. Rosenthal, and J. H. Dean, Development of a testing battery to assess chemical-induced im-munotoxicity: National toxicology program’s guidelines for immunotoxicity evaluation in mice, Fundamental Appl. Toxicol. 10:2 (1988).CrossRefGoogle Scholar
  15. 15.
    V. J. Hearing, G. B. Cannon, W. D. Vieira, M. Jimenez-Atienzar, K. Kameyama, and L. W. Law, JB/MS murine melanoma: A new model for studies on the modulation of differentiation and of tumorigenic and metastatic potential, Int J. Cancer 41:275 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Moriguchi, L. Werner, and R. R. Watson, High dietary vitamin A and cellular immune functions in mice, Immunology 56:169 (1985).PubMedGoogle Scholar
  17. 17.
    R. R. Watson, R. H. Prabhala, H. R. Darban, M. D. Yahya, and T. L. Smith, Changes in lymphocyte and macrophage subsets due to morphine and ethanol treatment during a retrovirus infection causing murine AIDS, LifeSci. 43:v (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    K. Kumagai, K. Itoh, S. Hinuma, and Tada, Pretreatment of plastic petri dishes with fetal calf serum: A simple method for macrophage isolation, J. Immunol. Methods 29:17 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    R. R. Watson, R. H. Prabhala, E. Abril, and T. L. Smith, Changes in lymphocyte subsets and macrophage functions from high, short-term dietary ethanol in C57/BL6 mice, Life Sci. 43:865 (1988).PubMedCrossRefGoogle Scholar
  20. 20.
    E. R. Abril, J. A. Rybski, P. Scuderi, and R. R. Watson, Beta-carotene stimulates human monocyte secretion of a novel tumoricidal cytokine, J. Leuk. Biol. 45:255 (1989).Google Scholar
  21. 21.
    R. R. Watson and J. Rybski, Immunological response modification by vitamin A and other retinoids, in: “Nutrition and Immunology,” R. K. Chandra, ed., A. R. Liss, New York (1988).Google Scholar
  22. 22.
    M. J. Murray, et al., Models for the evaluation of tumor resistance following chemical or drug exposure, Immunotoxicology and Immunopharmacology113 (1985).Google Scholar
  23. 23.
    A. Bendich and J. A. Olson, Biological actions of carotenoids, FASEB J. 3:1927 (1989).PubMedGoogle Scholar
  24. 24.
    A. Bendich, Carotenoids and the Immune Response, J. Nutr. 119:112 (1989).PubMedGoogle Scholar
  25. 25.
    T. E. Moon and M. S. Micozzi, Beta-carotene, canthaxanthin, and phytoene, Nutr. Cancer Prev. 273 (1989).Google Scholar
  26. 26.
    A. Bendich, and S. S. Sharpiro, Effect of beta-carotene and canthaxanthin on the immune responses of the rat, J. Nutr. 116:2254 (1986).PubMedGoogle Scholar
  27. 27.
    M. Mathews-Roth, Carotenoids and cancer prevention-experimental and epidemiological studies, Pure Appl. Chem. 57:717 (1985).CrossRefGoogle Scholar
  28. 28.
    L. Santamaria, A. Bianchi, A. Arnaboldi, L. Andreoni, and P. Bermond, Dietary carotenoids block photocarcinogenic enhancement by benzo[a]-pyrene and inhibit its carcinogenesis in the dark, Experientia 39:1043 (1983).PubMedCrossRefGoogle Scholar
  29. 29.
    T. A. Colacchio, V. A. Memoli, and L. Hildebrandt, Antioxidants vs carotenoids: Inhibitors or promoters of experimental colorectal cancers, Arch. Surg. 124:217 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Dennis S. Huang
    • 1
  • Ronald Ross Watson
    • 1
  • Guan-Jie Chen
    • 1
  • Bernhard Watzl
    • 1
  1. 1.NIAAA Specialized Alcohol Research Center and Department of Family and Community MedicineUniversity of Arizona, School of MedicineTucsonUSA

Personalised recommendations