Skip to main content

Isoprenoid Formation and Cell-Mediated Immunological Functions

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 288))

Abstract

Isoprenoid molecules are formed through a complex, multi-enzyme synthetic pathway. Main products of this pathway are cholesterol, bile acid and steroids. In addition, there are minor products of the pathway, such as dolichol, isopentenyl adenosine and ubiquinone. The early rate limiting step in all isoprenoid synthesis is the formation of mevalonate catalyzed by 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Potent and specific competitive inhibitors of HMG-CoA reductase have been identified, which can block mevalonate formation and reduce cholesterol and other isoprenoid production. For example, mevinolin and several of its derivatives are increasingly being used clinically for treatment of hypercholesterolemia, particularly with view to improvement of cardiovascular disease (1,2,3).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Hoeg and H. B. Brewer, Jr., 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in the treatment of hypercholesterolemia, JAMA258:3532 (1987).

    Article  PubMed  CAS  Google Scholar 

  2. The Lovastatin Study Group III, A multicenter comparison of lovastatin and cholestyramine therapy for severe primary hypercholesterolemia, JAMA260:359 (1988).

    Article  Google Scholar 

  3. S. M. Grundy, HMG-CoA reductase inhibitors for treatment of hypercholesterolemia, New Engl. J. Med. 319:24 (1988).

    Article  PubMed  CAS  Google Scholar 

  4. R. B. Herberman, ed., Natural cell-mediated immunity against tumors, Academic Press, New York, London (1980).

    Google Scholar 

  5. R. B. Herberman, ed., NK cells and other natural effector cells, Academic Press, New York, London (1982).

    Google Scholar 

  6. R. B. Herberman and D. M. Callewaert, Mechanisms of Cytotoxicity by NK cells, Academic Press, New York, London (1985).

    Google Scholar 

  7. J. R. Ortaldo, L. Mason, J. P. Gerari, L. E. Henderson, W. Farrar, R. F. Hopkins III, R. B. Herberman, and H. Rabin, Effects of natural and recombinant IL-2 on regulation of IFN gamma production and natural killer activity: Lack of involvement of the TAC antigen for these immunoregula-tory events, Immunol. 133:799 (1984).

    Google Scholar 

  8. A. E. Grimm, A. Mazumder, H. Z. Zhang, and S. A. Rosenberg, Lymphokine-activated killer cell phenomenon. Lysis of natural killer resistant fresh solid tumor cells by interleukin-2 activated autologous human peripheral blood lymphocytes, J. Exp. Med. 155:1823 (1982).

    Article  PubMed  CAS  Google Scholar 

  9. A. E. Grimm and S. A. Rosenberg, The human lymphokine activated killer cell phenomenon, Lymphokines 9:279 (1984).

    CAS  Google Scholar 

  10. A. E. Grimm, R. J. Robb, J. A. Roth, L. M. Neckers, L. B. Lachman, D. J. Wilson, and S. A. Rosenberg, Lymphokine-activated killer cell phenomenon, III, Evidence that IL-2 is sufficient for direct activation of peripheral blood lymphocytes into lymphokine-activated killer cells, J. Exp. Med. 158:1356 (1983).

    Article  PubMed  CAS  Google Scholar 

  11. S. A. Rosenberg, Cancer therapy with interleukin-2: immunologic manipulations can mediate the regression of cancer in humans, J. Clin. Oncol. 6:403 (1988).

    PubMed  CAS  Google Scholar 

  12. C. M. van Haelst-Pisani, R. J. Pisani, and J. S. Kovach, Cancer immunotherapy: Current status of treatment with interleukin 2 and lymphokine-activated killer cells, Mayo Clin. Proc. 64:451 (1989).

    PubMed  Google Scholar 

  13. R. A. Schmidt, C. J. Schneider, and J. A. Glomset, Evidence for post-translation of a product of mevalonic acid into swiss 3T3 cell proteins, J. Biol. Chem. 259:10175 (1984).

    PubMed  CAS  Google Scholar 

  14. L. A. Beck, T. J. Hosick, and M. Sinensky, Incorporation of a product of mevalonic acid metabolism into proteins of Chinese hamster ovary cell nuclei, J. Cell. Bid. 107:1307 (1988).

    Article  CAS  Google Scholar 

  15. E. M. Repko, and W. A. Maltese, Post-translational isoprenylation of cellular proteins is altered in response to mevalonate availability, J. Biol. Chem. 264:9945 (1989).

    PubMed  CAS  Google Scholar 

  16. J. F. Hancock, A. I. Magee, J. E. Childs, and C. J. Marshall, AII ras proteins are polyisoprenylated but only some are palmitoylated, Cell 57:1167 (1989).

    Article  PubMed  CAS  Google Scholar 

  17. J. A. Glomset, M. H. Gelb, and C. C. Farnsworth, Prenylprotein in eukaryotic cells: A new type of membrane anchor TIBS 15:139 (1990).

    PubMed  CAS  Google Scholar 

  18. I. Kaneko, Y. Hazama-Shimada and A. Endo, Inhibitory effects of lipid metabolism in cultured cells of ML-236B, a potent inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, Eur. J. Biochem. 87:313 (1978).

    Article  PubMed  CAS  Google Scholar 

  19. P. Anderson, M. Caliguiri, J. Ritz, and S. F. Schlossman, CD3-negative natural killer cells express zeta TCR as part of a novel molecular complex, Nature341:159 (1989).

    Article  PubMed  CAS  Google Scholar 

  20. W. J. Leonard, J. M. Depper, M. Kronke, R. J. Robb, T. A. Waldmann, and W. C. Greene, The human receptor for T-cell growth factor, J. Biol. Chem. 260:1872 (1985).

    PubMed  CAS  Google Scholar 

  21. M. C. Miedel, J. D. Hulmes, D. V. Weber, P. Bailon, and Y-C. E. Pan, Structural analysis of recombinant soluble human interleukin-2 receptor, Bio-chem. Biophys. Res. Comm. 154:372 (1988).

    Article  CAS  Google Scholar 

  22. M. Tsudo, C. K. Goldman, K. F. Bongiovanni, W. C. Chan, E. F. Winton, M. Yagita, E. A. Grimm, and T. A. Waldmann, The p75 peptide is the receptor for interleukin 2 on large granular lymphocytes and is responsible for the interleukin 2 activation of these cells, Proc. Natl. Acad. Sci. USA 84:5394 (1987).

    Article  PubMed  CAS  Google Scholar 

  23. G. A. Reynolds, S. K. Basu, T. F. Osborne, D. J. Chin, G. Gil, M. S. Brown, J. L. Goldstein, and K. L. Luskey, HMG-CoA reductase: A negatively regulated gene with unusual promoter and 5’ untranslated regions, Cell 38:275 (1984).

    Article  PubMed  CAS  Google Scholar 

  24. T. F. Osborne, J. L. Goldstein, and M. S. Brown, 5’ End of HMG-CoA reductase gene contains sequences responsible for cholesterol-mediated inhibition of transcription, Cell 42:203 (1985).

    Article  PubMed  CAS  Google Scholar 

  25. T. F. Osborne, G. Gil, M. S. Brown, R. C. Kowal, and J. L. Goldstein, Identification of promoter element required for in vitro transcription of hamster 3-hydroxy-3-methylglutaryl coenzyme A reductase gene, Proc. Natl. Acad. Sci. USA 84:3614 (1987).

    Article  PubMed  CAS  Google Scholar 

  26. A. A. Kandutsch, H. W. Chen, and J. J. Heiniger, Biological activity of some oxygenated sterols, Science 201:498 (1978).

    Article  PubMed  CAS  Google Scholar 

  27. H. W. Chen, The role of cholesterol metabolism in cell growth, Fed. Proc. 43:126 (1984).

    PubMed  CAS  Google Scholar 

  28. H. W. Chen, H. J. Heiniger, and A. A. Kandutsch, Stimulation of sterol and DNA synthesis in leukemic blood cells by low concentrations of phyto-hemagglutinin, Expt. Cell. Res. 109:253 (1977).

    Article  CAS  Google Scholar 

  29. H. M. K. Humphries and H. M. McConnell, Potent immunosuppression by oxidized cholesterol, J. Immunol. 122:121 (1979).

    PubMed  CAS  Google Scholar 

  30. H. M. K. Humphries, Compactin and oxidized cholesterol, both known to inhibit cholesterol biosynthesis differ in their ability to suppress in vitro immune responses, Cancer Res. 41:3789 (1981).

    PubMed  CAS  Google Scholar 

  31. H. J. Heiniger and D. Marshall, Oxygenated derivatives of cholesterol and lymphocyte function: Cholesterol synthesis in polyclonally activated cytotoxic lymphocytes and its requirement for differentiation and proliferation, Proc. Natl. Acad. Sd. USA 79:3823 (1982).

    Article  CAS  Google Scholar 

  32. H. J. Heininger, H. W. Chen, G. A. Boissonneault, M. Hess, H. Cottier, and R. D. Stoner, The role of cholesterol and oxysterols in lymphocyte proliferation and differentiation, Ann. NY Acad. Sci. 459:111 (1985).

    Article  Google Scholar 

  33. W. R. Schafer, R. Kim, R. Sterne, J. Thorner, S.-H. Kim, and J. Rine, Genetic and pharmacological suppression of oncogenic mutations in ras genes of yeast and humans, Science 245:379 91989).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Linna, J., Moke, M., Chen, H.W. (1991). Isoprenoid Formation and Cell-Mediated Immunological Functions. In: Friedman, H., Specter, S., Klein, T.W. (eds) Drugs of Abuse, Immunity, and Immunodeficiency. Advances in Experimental Medicine and Biology, vol 288. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5925-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5925-8_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5927-2

  • Online ISBN: 978-1-4684-5925-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics