Isoprenoid Formation and Cell-Mediated Immunological Functions

  • Juhani Linna
  • Marie Moke
  • Harry W. Chen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 288)


Isoprenoid molecules are formed through a complex, multi-enzyme synthetic pathway. Main products of this pathway are cholesterol, bile acid and steroids. In addition, there are minor products of the pathway, such as dolichol, isopentenyl adenosine and ubiquinone. The early rate limiting step in all isoprenoid synthesis is the formation of mevalonate catalyzed by 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Potent and specific competitive inhibitors of HMG-CoA reductase have been identified, which can block mevalonate formation and reduce cholesterol and other isoprenoid production. For example, mevinolin and several of its derivatives are increasingly being used clinically for treatment of hypercholesterolemia, particularly with view to improvement of cardiovascular disease (1,2,3).


Mevalonic Acid Isopentenyl Adenosine Isoprenoid Synthesis Lymphokine Activate Killer Activity Lymphokine Activate Killer Cell Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Hoeg and H. B. Brewer, Jr., 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in the treatment of hypercholesterolemia, JAMA258:3532 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    The Lovastatin Study Group III, A multicenter comparison of lovastatin and cholestyramine therapy for severe primary hypercholesterolemia, JAMA260:359 (1988).CrossRefGoogle Scholar
  3. 3.
    S. M. Grundy, HMG-CoA reductase inhibitors for treatment of hypercholesterolemia, New Engl. J. Med. 319:24 (1988).PubMedCrossRefGoogle Scholar
  4. 4.
    R. B. Herberman, ed., Natural cell-mediated immunity against tumors, Academic Press, New York, London (1980).Google Scholar
  5. 5.
    R. B. Herberman, ed., NK cells and other natural effector cells, Academic Press, New York, London (1982).Google Scholar
  6. 6.
    R. B. Herberman and D. M. Callewaert, Mechanisms of Cytotoxicity by NK cells, Academic Press, New York, London (1985).Google Scholar
  7. 7.
    J. R. Ortaldo, L. Mason, J. P. Gerari, L. E. Henderson, W. Farrar, R. F. Hopkins III, R. B. Herberman, and H. Rabin, Effects of natural and recombinant IL-2 on regulation of IFN gamma production and natural killer activity: Lack of involvement of the TAC antigen for these immunoregula-tory events, Immunol. 133:799 (1984).Google Scholar
  8. 8.
    A. E. Grimm, A. Mazumder, H. Z. Zhang, and S. A. Rosenberg, Lymphokine-activated killer cell phenomenon. Lysis of natural killer resistant fresh solid tumor cells by interleukin-2 activated autologous human peripheral blood lymphocytes, J. Exp. Med. 155:1823 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    A. E. Grimm and S. A. Rosenberg, The human lymphokine activated killer cell phenomenon, Lymphokines 9:279 (1984).Google Scholar
  10. 10.
    A. E. Grimm, R. J. Robb, J. A. Roth, L. M. Neckers, L. B. Lachman, D. J. Wilson, and S. A. Rosenberg, Lymphokine-activated killer cell phenomenon, III, Evidence that IL-2 is sufficient for direct activation of peripheral blood lymphocytes into lymphokine-activated killer cells, J. Exp. Med. 158:1356 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    S. A. Rosenberg, Cancer therapy with interleukin-2: immunologic manipulations can mediate the regression of cancer in humans, J. Clin. Oncol. 6:403 (1988).PubMedGoogle Scholar
  12. 12.
    C. M. van Haelst-Pisani, R. J. Pisani, and J. S. Kovach, Cancer immunotherapy: Current status of treatment with interleukin 2 and lymphokine-activated killer cells, Mayo Clin. Proc. 64:451 (1989).PubMedGoogle Scholar
  13. 13.
    R. A. Schmidt, C. J. Schneider, and J. A. Glomset, Evidence for post-translation of a product of mevalonic acid into swiss 3T3 cell proteins, J. Biol. Chem. 259:10175 (1984).PubMedGoogle Scholar
  14. 14.
    L. A. Beck, T. J. Hosick, and M. Sinensky, Incorporation of a product of mevalonic acid metabolism into proteins of Chinese hamster ovary cell nuclei, J. Cell. Bid. 107:1307 (1988).CrossRefGoogle Scholar
  15. 15.
    E. M. Repko, and W. A. Maltese, Post-translational isoprenylation of cellular proteins is altered in response to mevalonate availability, J. Biol. Chem. 264:9945 (1989).PubMedGoogle Scholar
  16. 16.
    J. F. Hancock, A. I. Magee, J. E. Childs, and C. J. Marshall, AII ras proteins are polyisoprenylated but only some are palmitoylated, Cell 57:1167 (1989).PubMedCrossRefGoogle Scholar
  17. 17.
    J. A. Glomset, M. H. Gelb, and C. C. Farnsworth, Prenylprotein in eukaryotic cells: A new type of membrane anchor TIBS 15:139 (1990).PubMedGoogle Scholar
  18. 18.
    I. Kaneko, Y. Hazama-Shimada and A. Endo, Inhibitory effects of lipid metabolism in cultured cells of ML-236B, a potent inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, Eur. J. Biochem. 87:313 (1978).PubMedCrossRefGoogle Scholar
  19. 19.
    P. Anderson, M. Caliguiri, J. Ritz, and S. F. Schlossman, CD3-negative natural killer cells express zeta TCR as part of a novel molecular complex, Nature341:159 (1989).PubMedCrossRefGoogle Scholar
  20. 20.
    W. J. Leonard, J. M. Depper, M. Kronke, R. J. Robb, T. A. Waldmann, and W. C. Greene, The human receptor for T-cell growth factor, J. Biol. Chem. 260:1872 (1985).PubMedGoogle Scholar
  21. 21.
    M. C. Miedel, J. D. Hulmes, D. V. Weber, P. Bailon, and Y-C. E. Pan, Structural analysis of recombinant soluble human interleukin-2 receptor, Bio-chem. Biophys. Res. Comm. 154:372 (1988).CrossRefGoogle Scholar
  22. 22.
    M. Tsudo, C. K. Goldman, K. F. Bongiovanni, W. C. Chan, E. F. Winton, M. Yagita, E. A. Grimm, and T. A. Waldmann, The p75 peptide is the receptor for interleukin 2 on large granular lymphocytes and is responsible for the interleukin 2 activation of these cells, Proc. Natl. Acad. Sci. USA 84:5394 (1987).PubMedCrossRefGoogle Scholar
  23. 23.
    G. A. Reynolds, S. K. Basu, T. F. Osborne, D. J. Chin, G. Gil, M. S. Brown, J. L. Goldstein, and K. L. Luskey, HMG-CoA reductase: A negatively regulated gene with unusual promoter and 5’ untranslated regions, Cell 38:275 (1984).PubMedCrossRefGoogle Scholar
  24. 24.
    T. F. Osborne, J. L. Goldstein, and M. S. Brown, 5’ End of HMG-CoA reductase gene contains sequences responsible for cholesterol-mediated inhibition of transcription, Cell 42:203 (1985).PubMedCrossRefGoogle Scholar
  25. 25.
    T. F. Osborne, G. Gil, M. S. Brown, R. C. Kowal, and J. L. Goldstein, Identification of promoter element required for in vitro transcription of hamster 3-hydroxy-3-methylglutaryl coenzyme A reductase gene, Proc. Natl. Acad. Sci. USA 84:3614 (1987).PubMedCrossRefGoogle Scholar
  26. 26.
    A. A. Kandutsch, H. W. Chen, and J. J. Heiniger, Biological activity of some oxygenated sterols, Science 201:498 (1978).PubMedCrossRefGoogle Scholar
  27. 27.
    H. W. Chen, The role of cholesterol metabolism in cell growth, Fed. Proc. 43:126 (1984).PubMedGoogle Scholar
  28. 28.
    H. W. Chen, H. J. Heiniger, and A. A. Kandutsch, Stimulation of sterol and DNA synthesis in leukemic blood cells by low concentrations of phyto-hemagglutinin, Expt. Cell. Res. 109:253 (1977).CrossRefGoogle Scholar
  29. 29.
    H. M. K. Humphries and H. M. McConnell, Potent immunosuppression by oxidized cholesterol, J. Immunol. 122:121 (1979).PubMedGoogle Scholar
  30. 30.
    H. M. K. Humphries, Compactin and oxidized cholesterol, both known to inhibit cholesterol biosynthesis differ in their ability to suppress in vitro immune responses, Cancer Res. 41:3789 (1981).PubMedGoogle Scholar
  31. 31.
    H. J. Heiniger and D. Marshall, Oxygenated derivatives of cholesterol and lymphocyte function: Cholesterol synthesis in polyclonally activated cytotoxic lymphocytes and its requirement for differentiation and proliferation, Proc. Natl. Acad. Sd. USA 79:3823 (1982).CrossRefGoogle Scholar
  32. 32.
    H. J. Heininger, H. W. Chen, G. A. Boissonneault, M. Hess, H. Cottier, and R. D. Stoner, The role of cholesterol and oxysterols in lymphocyte proliferation and differentiation, Ann. NY Acad. Sci. 459:111 (1985).CrossRefGoogle Scholar
  33. 33.
    W. R. Schafer, R. Kim, R. Sterne, J. Thorner, S.-H. Kim, and J. Rine, Genetic and pharmacological suppression of oncogenic mutations in ras genes of yeast and humans, Science 245:379 91989).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Juhani Linna
    • 2
  • Marie Moke
    • 1
  • Harry W. Chen
    • 1
  1. 1.Medical Products DepartmentE. I. duPont de Nemours & Co.WilmingtonUSA
  2. 2.Applied Immune Sciences, Inc.Menlo ParkUSA

Personalised recommendations