Biochemical Characterization of Naloxone-Resistant Receptors for B-Endorphin on a Human Mononuclear Cell Line (U937) and Murine Splenocytes

  • Burt M. Sharp
  • Nahid A. Shahabi
  • Phillip K. Peterson
  • Kristin M. Linner
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 288)


β -Endorphin and the opiate alkaloids affect a variety of leukocyte functions which are involved in host defense and immunity. These effects can be separated according to their sensitivity vs resistance to inhibition by naloxone. Modulation of monocyte (1) and stimulation of polymorphonuclear leukocyte superoxide generation (2,3), inhibition of lymphocyte gamma-interferon secretion in response to concana-valin A (4), enhancement of natural killer (NK) cell activity (5,6), and opioid-induced inhibition of the antibody response to sheep erythrocytes (7) are all reversed by the opiate receptor antagonist, naloxone. These responses may depend on the activation of opiate receptors such as the mu-like (8) and delta opiate receptors (9) which have been partially characterized on murine splenocytes and human peripheral blood mononuclear cells. The mu-like site was sensitive to displacement by naloxone or morphine and completely resistant to ß-endorphin and leucine or methionine enkephalin. In contrast to these responses which are apparently mediated by opiate receptors, the effects of β-endorphin on mononuclear cell proliferative responses (10–12), interleukin-2 production (13), and calcium uptake (14) are resistant to inhibition by naloxone.


U937 Cell Human Peripheral Blood Mononuclear Cell Opiate Receptor Scatchard Analysis High Affinity Binding Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. K. Peterson, B. M. Sharp, G. Gekker, C. Brummitt, and W. F. Keane,Opioid-mediated suppression of cultured peripheral blood mononuclear cell respiratory burst activity, J. Immunol. 138:3907 (1987).PubMedGoogle Scholar
  2. 2.
    B. M. Sharp, W. F. Keane, H. J. Suh, G. Gekker, D. Tsukayama, and P. K. Peterson, Opioid peptides rapidly stimulate superoxide production by human polymorphonuclear leukocytes and peritoneal macrophages, Endocri nology 117:793 (1985).CrossRefGoogle Scholar
  3. 3.
    ß-Endorphin stimulates human polymorphonuclear leukocyte superoxide production via a stereoselective opiate receptor, J. Pharmacol. Exp. Ther. 242:579 (1987).Google Scholar
  4. 4.
    P. K. Peterson, B. M.Sharp, G. Gekker, C. Brummitt, and W. F. Keane, Opioid-mediated suppression of interferon production by cultured peripheral blood mononuclear cells. J. Clin. Invest. 80:824 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    P. M. Mathews, C. J. Froelich, W. L. Sibbit, and A. D. Bankhurst, Enhancement of natural cytotoxicity by ß-endorphin, J. Immunol. 130:1658 (1983).PubMedGoogle Scholar
  6. 6.
    R. N. Mandler, W. E. Biddison, R. Mandler, and S. A. Serrate, ß-Endorphin augments the cytolytic activity and interferon production of natural killer cells, J. Immunol. 136:934 (1986).PubMedGoogle Scholar
  7. 7.
    H. M. Johnson, E. M. Smith, B. A. Torres, and J. E. Blalock, Regulation of the in vitro antibody response by neuroendocrine hormones, Proc. Natl. Acad. Sci. USA 79:4171 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Ovadia, P. Nitson, and O. Abramsky, Characterization of opiate binding sites on membranes of rat lymphocytes, J. Neuroimmunol. 21:93 (1989).PubMedCrossRefGoogle Scholar
  9. 9.
    D. J. J. Carr, C.-H. Kim, B. DeCosta, A. E. Jacobson, K. C. Rice, and J. E. Blalock, Evidence for a delta class opioid receptor on cells of the immune system, Cell. Immunol. 111:44 (1988).CrossRefGoogle Scholar
  10. 10.
    S. C. Gilman, J. M. Schwartz, R. J. Milner, F. E. Bloom, and J. D. Feldman, ß-Endorphin enhances lymphocyte proliferative responses, Proc. Natl. Acad. Sci. USA 79:4226 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    H. W. McCain, I. B. Lamster, J. M. Bozzone, and J. T. Gribic, ß-Endorphin modulates human immune activity via non-opiate receptor mechanisms, LifeSci. 31:1619 (1982).PubMedCrossRefGoogle Scholar
  12. 12.
    F. Puppo, G. Corsini, P. Mangini, L. Bottaro, and T. Barreca, Influence of ß-endorphin on phytohemagglutinin-induced lymphocyte proliferation and on the expression of mononuclear cell surface antigens in vitro ,Immuno-pharmacology 10:119 (1985).CrossRefGoogle Scholar
  13. 13.
    W. Gilmore and L. P. Weiner, ß-Endorphin enhances interleukin-2 (IL-2) production in murine lymphocytes, J. Neuroimmunol. 18: 125 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    L. M. Hemmick and J. M. Bidlack, ß-Endorphin modulation of mitogen-stimulated calcium uptake by rat thymocytes, Life Sci. 41:1971 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    L. Schweigerer, W. Schmidt, H. Teschemacher, and S. Wilhelm, ß-Endorphin: interaction with specific nonopioid binding sites on EL4 thymoma cells, Neuropeptides 6:445 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    E. Hazum, K. J. Chang, and P. Cuatrecasas, Specific Nonopiate receptors for ß-endorphin, Science 205:1033 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    L. Schweigerer and W. Schmidt, H. Teschemacher and C. Gramsch, ß-Endorphin: Surface binding and internalization in thymoma cells, Proc. Natl Acad. Sd. USA 82: 5751 (1985).CrossRefGoogle Scholar
  18. 18.
    N. A. Shahabi, K. M. Linner, and B. M. Sharp, Murine splenocytes express a naloxone-insensitive binding site for ß-endorphin, Endocrinology 126:1442, (Copyright by The Endocrine Society) (1990).PubMedCrossRefGoogle Scholar
  19. 19.
    N. A. Shahabi, P. K. Peterson, and B. M. Sharp, ß-Endorphin binding to naloxone-insensitive sites on a human mononuclear cell line (U937): effects of cations and GTP, Endocrinology 126:300b (Copyright by the Endocrine Society) (1990).Google Scholar
  20. 20.
    C. B. Pert and S. H. Snyder, Opiate receptor binding of agonists and antagonists affected differentially by sodium, Mol. Pharmacol. 10:868 (1974).Google Scholar
  21. 21.
    A. J. Blume, Interaction of ligands with the opiate receptors of brain membranes: regulation by ions and nucleotides, Proc. Natl. Acad. Sci. USA75:1713 (1978).PubMedCrossRefGoogle Scholar
  22. 22.
    G. A. McPherson, Analysis of radioligand binding experiments: a collection of computer programs for IBM PC, J. Pharmacological Methods 14:213 (1985).CrossRefGoogle Scholar
  23. 23.
    H. Akil, E. Young, S. J. Watson, and D. H. Coy, Opiate binding properties of naturally occurring N-and C-terminus modified ß-endorphins, Peptides2:289 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    H. W. Kosterlitz and S. J. Paterson, Tyr-D-Ala-Met-Phe-NH (CH2)2OH is a selective ligand for the receptor binding site, Br. J. Pharmacol. 73:299 (1981).Google Scholar
  25. 25.
    K. Akiyama, K. W. Gee, H. I. Mosberg, and V. J. Hruby, Characterization of [3H][2-D-penicillamine,5-D-penicillamine]-enkephalin binding to delta opiate receptors in the rat brain and neuroblastoma-glioma hybrid cell line (NG 108-15), Proc. Natl Acad. Sd. USA 82:2543 (1985).CrossRefGoogle Scholar
  26. 26.
    R. A. Lahti, M. M. Mickelson, J. M. McCall, and P. F. Von Voightlander, [3H]U-69593 A highly selective ligand for the opioid kappa receptor, European J. Pharmacol. 109:281 (1985).CrossRefGoogle Scholar
  27. 27.
    E. J. Simon, J. M. Hiller, J. Groth, and I. Edelman, Further properties of stereospecific opiate binding sites in rat brain: on the nature of the sodium effect, J. Pharmacol. Exp. Ther. 192:531 (1975).PubMedGoogle Scholar
  28. 28.
    A. M. Simantov, Snowman, and S. H. Snyder, Temperature and ionic influences on opiate receptor binding, Mol. Pharmacol. 12:977 (1976).PubMedGoogle Scholar
  29. 29.
    A. D. Howard, S. de La Baume, T. L. Gioannini, J. M. Miller, E. J. Simon, Covalent labeling of opioid receptors with radioiodinated human ß-endorphin, J. Biol. Chem. 260:10833 (1985).PubMedGoogle Scholar
  30. 30.
    W. Gilmore and L. P. Weiner, The opioid specificity of beta-endorphin enhancement of murine lymphocyte proliferation, Immunopharmacol. 17: 19 (1989).CrossRefGoogle Scholar
  31. 31.
    P. Sacerdote and A. E. Panerai, Analysis of the beta endorphin structurerelated activity on human monocyte Chemotaxis: importance of the amino and carboxyl-terminal, Peptides 10:565 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Burt M. Sharp
    • 1
  • Nahid A. Shahabi
    • 1
  • Phillip K. Peterson
    • 1
  • Kristin M. Linner
    • 1
  1. 1.Endocrine-Neuroscience Research Laboratory, Minneapolis Medical Research Foundation and Departments of MedicineHennepin County Medical Center and University of MinnesotaMinneapolisUSA

Personalised recommendations