Effects of Marijuana on Macrophage Function

  • G. A. Cabral
  • R. Vásquez
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 288)


Delta-9-tetrahydrocannabinol (THC) is the major psychoactive component of marijuana. This substance has been shown to elicit a spectrum of effects in vitro and in experimental animals. The drug decreases host resistance to viruses (1–3) and bacteria (1), alters cellular morphology and function (4–10), and inhibits RNA, DNA, and protein synthesis (11–13). These effects on macromolecular synthesis suggest that THC may elicit its immunosuppressive effects by altering the expression and/or secretion of effector molecules. Macrophages play a central role in the regulation of immune responsiveness. These cells act “early” in a primary viral infection by exerting intrinsic and extrinsic antiviral activities (17,18), and play a central role in host resistance by their capacity to produce interferons and monokines and to function as antigen-presenting cells (19,20). Responsive macrophages undergo a multi-step process to full activation (21–23). Each of these stages in the activation process is associated with discrete functional activities. Responsive macrophages ingest and degrade bacteria and viruses. A hallmark of fully activated macrophages, on the other hand, is their capacity to destroy tumor cells and virus-infected cells. These effector functions are induced in response to a variety of signals, including bacteria and bacterial cell wall products (i.e., lipopolysaccharide). The sequential development of responsive macrophages to full activation is accompanied by the expression of defined, quantifiable protein markers which reflect the potential of the macrophage to execute different functional activities.


Peritoneal Macrophage VERO Cell Tumoricidal Activity Marijuana Smoke Macromolecular Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. S. Morahan, P. C. Klykken, S. H. Smith, L. S. Harris, and A. E. Munson, Effects of cannabinoids on host resistance to Listeria monocytogenes and herpes simplex virus, Infect. Immun. 23:670 (1979).PubMedGoogle Scholar
  2. 2.
    E. M. Mishkin and G. A. Cabral, Delta-9-tetrahydrocannabinol decreases host resistance to herpes simplex virus type 2 vaginal infection in the B6C3F1 mouse, J. Gen. Virol. 66:2539 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    G. A. Cabral, E. M. Mishkin, F. Marciano-Cabral, P. Coleman, L. Harris, and A. E. Munson, Effect of delta-9-tetrahydrocannabinol on herpes simplex virus type 2 vaginal infection in the guinea pig, Proc. Soc. Exp. Biol. Med. 182:181 (1986).PubMedGoogle Scholar
  4. 4.
    W. Pereira, T. McLaughlin, M. T. Baranano, S. Dudley, D. O’Connell, M. Cutting, and G. Huber, The acute effect of marijuana smoke on antibacterial and defense mechanisms of lung, Clin. Res. 23:A351 (1975).Google Scholar
  5. 5.
    G. I. Huber, G. A Simmons, C. R. McCarthy, M. B. Cutting, R. Laguarda, and W. Pereira, Depressant effects of marijuana smoke on antibactericidal activity of pulmonary alveolar macrophages, Chest 68:769 (1975).PubMedCrossRefGoogle Scholar
  6. 6.
    A. Chari-Bitron, Effect of 11tetrahydrocannabinol on red blood cell membranes and alveolar macrophages, in: “Marijuana: Chemistry, Biochemistry, and Cellular Effects,” G. G. Nahas, ed., Springer-Verlag, New York (1976).Google Scholar
  7. 7.
    C. R. McCarthy, M. B. Cutting, G. A. Simmons, W. Pereira, R. Laguarda, and G. L. Huber, The effect of marijuana on the in vitro function of pulmonary alveolar macrophages, in: “Pharmacology of Marijuana,” M. C. Braude and S. Szara, eds., Vol. 1, Raven Press, New York (1976).Google Scholar
  8. 8.
    D. B. Drath, J. M. Shorey, L. Price, and G. L. Huber, Metabolic and functional characteristics of alveolar macrophages recovered from rats exposed to marijuana smoke, Infect. Immun. 25:268 (1979).PubMedGoogle Scholar
  9. 9.
    G. L. Huber, J. W. Shea, W. C. Hinds, V. E. Pochay, and R. T. Weker, M. W. First, and G. C. Sornberger, The gas phase of marijuana smoke and intra-pulmonary bacterial defenses, Bull. Eur. Physiopathol. Resp. 15:491 (1979).Google Scholar
  10. 10.
    M. Lopez-Cepero, M. Friedman, T. Klein, and J. Friedman, Tetrahydrocannabinol-induced suppression of macrophage spreading and phagocytic activity in vitro ,J. Leukocyte Biol. 39:679 (1986).PubMedGoogle Scholar
  11. 11.
    R. A. Carchman, L. S. Harris, and A. E. Munson, The inhibition of DNA synthesis by cannabinoids, Cancer Res. 36:95 (1976).PubMedGoogle Scholar
  12. 12.
    R. D. Blevins and J. D. Regan, Delta-9-tetrahydrocannabinol: Effect on macromolecular synthesis in human and other mammalian cells, Arch. Toxicol. 44:133 (1980).Google Scholar
  13. 13.
    G. G. Nahas, A. Morishima, and B. Desoize, Effects of cannabinoids on macromolecular synthesis and replication of cultured lymphocytes, Fed. Proc. 36:1748 (1977).PubMedGoogle Scholar
  14. 14.
    R. T. Johnson, The pathogenesis of herpesvirus encephalitis. II. A cellular basis for the development of resistance with age, J. Exp. Med. 120:358 (1964).CrossRefGoogle Scholar
  15. 15.
    J. G. Stevens and M. L. Cook, Restriction of herpes simplex virus by macrophages. An analysis of the cell-virus interaction, J. Exp. Med. 133:19 (1971).PubMedCrossRefGoogle Scholar
  16. 16.
    C. A. Mims and J. Gould, The role of macrophages in mice infected with murine cytomegalovirus, J. Gen. Virol. 41:143 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    P. S. Morahan, L. A. Glasgow, J. L. Crane, and E. R. Kern, Comparison of antiviral and antitumor activity of activated macrophages, Cellular Immunity18:404 (1977).CrossRefGoogle Scholar
  18. 18.
    P. S. Morahan, S. S. Morse, and M. B. McGeorge, Macrophage extrinsic antiviral activity during herpes simplex virus infection, J. Gen. Virol. 46:291 (1980).PubMedCrossRefGoogle Scholar
  19. 19.
    E. R. Unanue, The regulatory role of macrophages in antigenic stimulation. Part two: Symbiotic relationship between lymphocytes and macrophages, Adv. Immunol. 31:1 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    S. Howie and W. H. McBride, Cellular interactions and thymus-dependent antibody responses, Immunology Today 3:273 (1982).CrossRefGoogle Scholar
  21. 21.
    J. L. Pace, S. W. Russell, B. A. Torres, H. M. Johnson, and P. W. Gray, Recombinant mouse interferon gamma induces the priming step in macrophage activation in tumor cell killing, J. Immunol. 130:2011 (1983).PubMedGoogle Scholar
  22. 22.
    R. D. Schreiber, J. L. Pace, J. L. Russell, S. W. Altman, and D. H. Katz, Macrophage activating factor produced by a T-cell hybridoma: Physicochem-ical and biosynthetic resemblance to gamma interferon, J. Immunol. 131:826 (1983).PubMedGoogle Scholar
  23. 23.
    T. A. Hamilton, M. M. Jansen, S. D. Somers, and D. Adams, Effects of bacterial lipopolysaccharide on protein synthesis in murine peritoneal macrophages: Relationship to activation for macrophage tumoricidal function, J. Cell. Phys. 128:9 (1986).CrossRefGoogle Scholar
  24. 24.
    C. Hamelin, A. Chagnon, and M. Farwel, Identification of atypical strains of herpes simplex virus using a simplified DNA finger printing method, Micro biol. Immunol. 28:723 (1984).Google Scholar
  25. 25.
    M. F. Ackerman, R. Mark, P. R. Chakraborty, and P. S. Morahan, Effects of Propionibacterium acnes immunomodulation: Inhibition of macrophage activation and antitumor activity, J. Leukocyte Biol. 40:549 (1986).Google Scholar
  26. 26.
    U. Brunk, V. P. Collins, and E. Arro, The fixation, dehydration, drying, and coating of cultured cells for SEM, J. Microsc. 123:21 (1981).CrossRefGoogle Scholar
  27. 27.
    P. H. O’Farrell, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem. 250:4007 (1975).PubMedGoogle Scholar
  28. 28.
    P. A. Marino, and D. O. Adams, Interaction of bacillus Calmette-Guerinactivated macrophages and neoplastic cells in vitro II. The relationship of selective binding to cytolysis, Cell. Immunol. 54:26 (1980).PubMedCrossRefGoogle Scholar
  29. 29.
    D. O. Adams, W. J. Johnson, and P. A. Marino, Mechanisms of target recognition and destruction in macrophage-mediated cytotoxicity. Fed. Proc. 41:2212 (1982).PubMedGoogle Scholar
  30. 30.
    P. S. Morahan, S. Mama, F. Anaraki, and K. Leary, Molecular localization of abortive infection of resident peritoneal macrophages by herpes simplex virus type 1, J. Virol. 63:2300 (1989).PubMedGoogle Scholar
  31. 31.
    G. A. Cabral and E. M. Mishkin, Delta-9-tetrahydrocannabinol inhibits macrophage protein expression in response to bacterial immunomodulators, J. Toxicol. Environ. Health 26:175 (1989).PubMedCrossRefGoogle Scholar
  32. 32.
    D. R. Wing, J. T. A. Leuschner, G. A. Brent, D. J. Harvey, and W. D. M. Paton, Quantification of in vivo membrane-associated delta-1-tetrahydrocannabinol and its effect on membrane fluidity, in:“Proceedings of the 9th International Congress of Pharmacology:3rd satellite symposium on cannabis,” D. J. Harvey, ed., IRL Press, Oxford (1985).Google Scholar
  33. 33.
    L. Carrasco and A. E. Smith, Sodium ions and the shut-off of host cell protein synthesis by picornaviruses, Nature (London) 264:807 (1976).CrossRefGoogle Scholar
  34. 34.
    R. F. Garry, J. M. Bishop, S. Parker, K. Westbrook, G. Lewis, and M. R. F. Waite, Na+ and K+ concentrations and the regulation of protein synthesis in Sindbis virus-infected chick cells, Virology 96:108 (1979).PubMedCrossRefGoogle Scholar
  35. 35.
    R. F. Garry, E. T. Vlue, and H. R. Bose, Membrane-mediated alterations of intracellular Na+ and K+ in lytic-virus-infected and retrovirus-transformed cells, Biosci. Rep. 2:617 (1982).PubMedCrossRefGoogle Scholar
  36. 36.
    M. K. Poddar, G. Mitra, and J. J. Ghosh, Delta-9-tetrahydrocannabinol-induced changes in brain ribosomes, Toxicol. Appl. Pharmacol. 46:737 (1978).PubMedCrossRefGoogle Scholar
  37. 37.
    W. A. Meyers and R. G. Heath, Cannabis sativa ultrastructural changes in organelles of neurons in brain septal region of monkeys, J. Neurosci. Res. 4:9 (1979).PubMedCrossRefGoogle Scholar
  38. 38.
    G. A. Cabral, P. J. McNerney, and E. M. Mishkin, Interaction of delta-9-tetrahydrocannabinol with rat B103 neuroblastoma cells, Arch. Toxicol. 60:438 (1987).PubMedCrossRefGoogle Scholar
  39. 39.
    M. P. Holsapple, P. J. McNerney, E. M. Mishkin, and G. A. Cabral, In vivo and in vitro effects of delta-9-tetrahydrocannabinol on immune responsiveness and resistance to vaginal herpes simplex virus II (HSV2) infection by B6C3F1 mice, in: Proceedings of the Oxford Symposium on Cannabis, IRL Press, Oxford (1985).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • G. A. Cabral
    • 1
  • R. Vásquez
    • 1
  1. 1.Department of Microbiology and Immunology, Medical College of VirginiaVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations