Advertisement

Measurement of Translational Accuracy in Streptomyces

  • J. Weiser
  • J.-L. Pernodet
  • M. Cassan
  • M. Ehrenberg
  • J. Náprstek
  • M. Guerineau
  • M. Picard
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 55)

Abstract

Bacteria as well as eukaryotic cells developed several mechanisms which prevent accumulation of errors in proteins they synthetize. Nevertheless, in both the types of cells the natural level of translational accuracy achieved is far from its attainable maximum since it can be increased by mutations affecting mostly ribosomal proteins. This indicates that a certain optimal level of translational fidelity was selected during evolution rather than its maximum level (Ehrenberg et al., 1986). The reason for this could be that translational errors may play an important regulation role.

Keywords

Ribosomal Protein Translational Accuracy Nonsense Suppression Translational Fidelity Mutant Ribosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barritault D., Expert-Bezançon A., Guérin M.-F. and Hayes D., 1976, The use of acetone precipitation in the isolation of ribosomal proteins, Eur. J. Biochem. 63: 131.PubMedCrossRefGoogle Scholar
  2. Bibb M.J., Ward J.M. and Hopwood D.A., 1978, Transformation of plasmid DNA into Streptomyces at high frequence, Nature 274: 398.PubMedCrossRefGoogle Scholar
  3. Campbell KM. and Chamblis G.H., 1977, Streptomycin-resistant, asporogenous mutant of Bacillus subtilis, Mol. Gen. Genet. 158: 193.CrossRefGoogle Scholar
  4. Chater K.F., 1989, Multilevel regulation of Streptomyces differentiation, Trends Genet. 5: 372.PubMedCrossRefGoogle Scholar
  5. Craigen W.J. and Caskey C.T., 1986, Expression of peptide chain release factor 2 requires high-efficiency frameshifting, Nature 322: 273.PubMedCrossRefGoogle Scholar
  6. Dequard-Chablat M. and Coppin-Raynal E., 1984, Increase of translational fidelity blocks sporulation in the fungus Podospora anserina, Mol. Gen. Genet. 195: 294.CrossRefGoogle Scholar
  7. Ehrenberg M., Kurland C.G. and Blomberg C., 1986, Kinetic costs of accuracy in translation, in: “Accuracy in Molecular Processes”, Kirkwood T.B.L., Rosenberg R.F. and Galas D.J., eds., Chapman and Hall, London, New York.Google Scholar
  8. Geyl D., Bock A. and Isono K., 1981, An improved method for two-dimensional gel electrophoresis: Analysis of mutationally altered ribosomal proteins of Escherichia coli, Mol. Gen. Genet. 181: 309.PubMedCrossRefGoogle Scholar
  9. Gorini L., 1970, The contrasting role of strA and ram gene products in ribosomal functioning, Cold Spring Harbor Symp. Quant. Biol. 34: 101.CrossRefGoogle Scholar
  10. Gorini L. and Kataja E., 1964, Phenotypic repair by streptomycin of defective genotypes in E. coli, Proc. Natl. Acad. Sci. USA 51: 487.PubMedCrossRefGoogle Scholar
  11. Hanahan D., 1983, Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557.PubMedCrossRefGoogle Scholar
  12. Jelenc P.C., 1980, Rapid purification of highly active ribosomes from Escherichia coli, Anal. Biochem. 105: 369.Google Scholar
  13. Jelenc P.C. and Kurland C.G., 1979, Nucleoside triphosphate regeneration decreases the frequency of translation errors, Proc. Natl. Acad. Sci. USA 76: 3174.PubMedCrossRefGoogle Scholar
  14. Kieser T., 1984, Factors affecting the isolation of ccc DNA from Streptomyces lividans and Escherichia coli. Plasmid 12: 19.PubMedCrossRefGoogle Scholar
  15. Nguyen V. T., Morange M. and Bensaude O., 1988, Firefly luciferase luminescence assays using scintillation counters for quantitation in transfected mammalian cells, Anal. Biochem. 171: 324.CrossRefGoogle Scholar
  16. Picard-Bennoun M., 1982, Does translational ambiguity increase during cell differentiation? FEBS Lett. 149: 167.PubMedCrossRefGoogle Scholar
  17. Wagner E.G.H., Jelenc P.C., Ehrenberg M. and Kurland C.G., 1982, Rate of elongation of polyphenylalanine in vitro, Eur. J. Biochem. 122: 193.PubMedCrossRefGoogle Scholar
  18. de Wet J.R., Wood V.K., Helinski D.R. and de Luca M., 1985, Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli, Proc. Natl. Acad. Sci. USA 82: 7870.PubMedCrossRefGoogle Scholar
  19. de Wet J.R., Wood K.V., de Luca M., Helinski D.R. and Subramani S., 1987, Firefly luciferase gene: Structure and expression in mammalian cells, Mol. Cell. Biol. 7: 725.PubMedGoogle Scholar
  20. Wilson W., Malim M.H., Mellor J., Kingsman A.J. and Kingsman S.M., 1986, Expression strategies of the yeast retrotranspozon Ty: a short sequence directs ribosomal frame shifting, Nucl. Acids Res. 14: 7001.PubMedCrossRefGoogle Scholar
  21. Yoshinaka T, Katoh I., Copeland T.D. and Orozlan S., 1985, Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon, Proc. Natl. Acad. Sci. USA 82: 1618.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. Weiser
    • 1
  • J.-L. Pernodet
    • 2
  • M. Cassan
    • 2
  • M. Ehrenberg
    • 3
  • J. Náprstek
    • 1
  • M. Guerineau
    • 2
  • M. Picard
    • 2
  1. 1.Institute of MicrobiologyCzechoslovak Academy of SciencesPragueCzechoslovakia
  2. 2.Centre d’OrsayUniversité de Paris-SudOrsayFrance
  3. 3.Biomedical CenterUniversity of UppsalaUppsalaSweden

Personalised recommendations