Analysis of Large Deletions and Characterization of the Deletion Endpoints Associated with an Amplifiable DNA Region in Streptomyces Lividans

  • Wolfgang Piendl
  • Silvano Köchl
  • Fiona Flett
  • John Cullum
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 55)


The phenomenon, that Streptomyces species can lose spontaneously certain phenotypes at frequenzies between 10–3 and 10–1 has been recognized since at least 1913 (Beijerinck 1913). This genetic instability is very common in many Streptomyces species and can affect a variety of genes; however, only specific genes are affected in any one strain (reviewed by Cullum et al., 1986; Hütter and Eckhardt, 1988). Frequently antibiotic producing strains, including some of commercial importance, are subject to genetic instability: they lose the ability to produce antibiotics (e.g. tetracyclines), i.e. they “degenerate”. As plasmid-curing agents such as acriflavine and ethidium bromide or UV-irradiation increased the frequency of mutation drastically, several authors suggested that the loss of a plasmid caused the loss of antibiotic production and they concluded that genes (or regulatory genes) for antibiotic production are coded on plasmids.


Genetic Instability Streptomyces Species Junction Fragment Unstable Gene YEME Medium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albertini, A. M., Hofer, M., Calos, M. P., and Miller, J. H., 1982, Dn the fprmation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions, Cell, 29: 319.PubMedCrossRefGoogle Scholar
  2. Altenbuchner, J., and Cullum, J., 1984, DNA amplification and an unstable arginine gene in Streptomyces lividans 66, Mol. Gen. Genet., 195: 134.PubMedCrossRefGoogle Scholar
  3. Altenbuchner, J., and Cullum, J., 1985, Structure of an amplifiable DNA sequence in streptomyces lividans 66, Mol. Gen. Genet., 201: 192.PubMedCrossRefGoogle Scholar
  4. Altenbuchner, J., Eichenseer, C., and Brüderlein, M., 1988, DNA amplification and deletion in Streptomyces lividans, in: Biology of Actinomycetes 88, Y. Okami, T. Beppu and H. Ogawara, eds., Japan Scientific Societes Press, Tokyo.Google Scholar
  5. Beijerinck, M. W., 1913, Über Schröter und Cohn’s Lakmusmicrococcus, Folie Microbiologica, 2: 185.Google Scholar
  6. Betzler, M., Dyson, P., and Schrempf, H., 1987, Relationship of an unstable argG gene to a 5.7 kilobase amplifiable DNA sequence in Streptomyces lividans 66, J. Bacteriol., 169: 4804.PubMedGoogle Scholar
  7. Birch, A., Häusler, A., Vögtli, M., Krek, W., and Hütter, R., 1989, Extremely large chromosomal deletions are intimately involved in genetic instability and genomic rearrangements in Streptomyces glaucescens, Mol. Gen. Genet., 217: 447.PubMedCrossRefGoogle Scholar
  8. Crameri, R., Kieser, T., Ono, H., Sanchez, J., and Hütter, R., 1983, Chromosomal instability in Streptomyces glaucescens: mapping of streptomycin-sensitive mutants, J. Gen. Microbiol., 129: 519.PubMedGoogle Scholar
  9. Cullum, J., Altenbuchner, J., Flett, F., and Piendl, W., 1986, DNA amplification and genetic instability in Streptomyces, Biotechnol. Genet. Eng. Rev. 4: 59.PubMedGoogle Scholar
  10. Dyson, P., Betzler, M., Kumar, T., and Schrempf, H., 1986, Biochemical and genetic analysis of spontaneous genetic instability and DNA amplification of Streptomyces lividans, in: Fifth International Symposium on the Genetics of Industrial Microorganisms, M. Alacevic, D. Hranueli and Z. Toman, eds., Zagreb.Google Scholar
  11. Dyson, P., and Schrempf, H., 1987, senetic instability and DNA amplification in Streptomyces lividans, J. Bacteriol., 169: 4796.Google Scholar
  12. Flett, F. and Cullum, J., 1987, DNA deletions in spontaneous chloramphenicol-sensitive mutants of Streptomyces coelicolor A3(2) and Streptomyces lividans 66, Mol. Gen. Genet., 207: 499.PubMedCrossRefGoogle Scholar
  13. Flett, F., Platt, J., and Cullum, J., 1987, DNA rearrangements associated with instability of an arginine gene in Streptomyces coelicolor A3(2), J. Basic Microbiol., 27: 3.PubMedCrossRefGoogle Scholar
  14. Genthner, F. J., Hook, L. A., and Strohl, W. R., 1985, Determination of the molecular mass of bacterial genomic DNA and plasmid copy number by high pressure liquid chromatography, Appl. Environ. Microbiol., 50: 1007.PubMedGoogle Scholar
  15. Häusler, A., Birch, A., Krek, W., Piret, J., and Hütter, R., 1989, Heterogenous genomic amplification in Streptomyces glaucescens: structure, location and junction sequence analysis, Mol. Gen. Genet., 217: 437.PubMedCrossRefGoogle Scholar
  16. Hopwood, D. A., Kieser, T., Wright, H. M., and Bibb, M. J., 1983, Plasmids, recombination and chromosome mapping in Streptomyces lividans 66, J. Gen. Microbiol., 129: 2257.PubMedGoogle Scholar
  17. Hütter, R. and Eckhardt, T., 1988, Genetic manipulation, in: Actinomycetes in biotechnology, M. Goodfellow, S. T. Williams and M. Mordarski, eds., Academic Press, London.Google Scholar
  18. Ishihara, H., Nakano, M. M., and Ogawara, H., 1985, Cloning of a gene from Streptomyces species complementing argG mutations, J. Antibiot., 38: 787.PubMedCrossRefGoogle Scholar
  19. Janniere, L., and Ehrlich, S. D., 1987, Recombination between short repeat sequences is more frequent in plasmids than in the chromosome of Bacillus subtilis, Mol. Gen. Genet., 210: 116.PubMedCrossRefGoogle Scholar
  20. Kendall, K. J., and Cohen, S. N., 1988, Complete nucleotide sequence of the Streptomyces lividans plasmid pIJ 101 and correlation of the sequence with genetic properties, J. Bacteriol., 170: 4634.PubMedGoogle Scholar
  21. Nakano, M. M., Ogawara, H., and Sekiya, T., 1984, Recombination between short direct repeats in Streptomyces lavendulae plasmid DNA, J. Bacteriol., 157: 658.PubMedGoogle Scholar
  22. Peters, B. P. H., de Boer, J. H., Bron, S., Venema, G., 1988, Structural plasmid instability in Bacillus subtilis: effect of direct and inverted repeats, Mol. Gen. Genet., 212: 450.CrossRefGoogle Scholar
  23. Sinclair, R. R., and Bibb, M. J., 1988, The repressor gene (ç) of Streptomyces temperate phage 0C31: nucleotide sequence analysis and functional cloning, Mol. Gen. Genet., 213: 269.PubMedCrossRefGoogle Scholar
  24. Zhou, X., Deng, Z., Firmin, J. L., Hopwood, D. A., and Kieser, T., 1988, Site-specific degradation of Streptomyces lividans DNA during electrophoresis in buffers contaminated with ferrous ions, Nucleic Acids Res., 16: 4341.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Wolfgang Piendl
    • 1
  • Silvano Köchl
    • 1
  • Fiona Flett
    • 2
  • John Cullum
    • 3
  1. 1.Institut für Mikrobiologie (Med. Fak.)Univ. InnsbruckAustria
  2. 2.Department of Biochemistry and Applied Molecular BiologyUMISTManchesterUK
  3. 3.LB GenetikUniversität KaiserslauternGermany

Personalised recommendations