Analysis of Amplifications and Deletions in Streptomyces Species

  • John Cullum
  • Fiona Flett
  • Birgit Gravius
  • Daslav Hranueli
  • Kiyotaka Miyashita
  • Jasenka Pigac
  • Uwe Rauland
  • Matthias Redenbach
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 55)

Abstract

Genetic instability is very common in Streptomyces species, and was one of the first reported properties (Beijerinck, 1913). Usually genetic instability has been detected as influencing easily scored phenotypes such as pigment production (Gregory and Huang, 1964), sporulation, auxotrophy (Redshaw et al., 1979) and antibiotic resistance (Freeman et al., 1977). In some cases genetic instability affects antibiotic production and can be a serious problem in industrial fermentations.

Keywords

Fermentation Recombination Agarose Electrophoresis Arginine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alacevic, M., Strasek-Vesligaj, M., and Sermonti, G., 1973, The circular linkage map of Streptomyces rimosus, J. Gen. Microbiol., 77: 173–185.Google Scholar
  2. Altenbuchner, J., and Cullum, J., 1985, Structure of an amplifiable DNA sequence in Streptomyces lividans 66, Mol. Gen. Genet., 201: 192–197.PubMedCrossRefGoogle Scholar
  3. Altenbuchner, J., and Cullum, J., 1987, Amplification of cloned genes in Streptomyces, Bio/Technology, 5: 1328–1329.CrossRefGoogle Scholar
  4. Beijerinck, M. W., 1913, Ueber Schröter und Cohn’s Lakmusmicrococcus, Folia Microbiol., 2: 185–200.Google Scholar
  5. Birch, A. W., and Cullum, J., 1985, Temperature-sensitive mutants of the Streptomyces plasmid pIJ702, J. Gen. Microbiol., 131: 1299–1303.PubMedGoogle Scholar
  6. Birch, A., Häusler, A., Vögtli, M., Krek, W., and Hütter, R., 1989, Extremely large chromosomal deletions are intimately involved in genetic instability and genomic rearrangements in Streptomyces glaucescens, Mol. Gen. Genet., 217: 447–458.PubMedCrossRefGoogle Scholar
  7. Birch, A. W., 1985, Plasmid replication and recombination in Streptomyces, PhD Thesis, University of Manchester.Google Scholar
  8. Chen, C. W., Tsai, J. F.-Y., and Chuang, S.-E., 1987, Intraplasmid recombination in Streptomyces lividans 66, Mol. Gen. Genet., 209: 154–158.PubMedCrossRefGoogle Scholar
  9. Cullum, J., Altenbuchner, J., Flett, F., and Piendl, W., 1986, DNA amplification and genetic instability in Streptomyces, Biotechnol. Gen. Eng. Rev., 4: 59–78.Google Scholar
  10. Danilenko, V. N., Starodubtseva, L. I., and Navashin, S. M., 1986, Regulation of expression of kanamycin resistance and chloramphenicol resistance determinants in Streptomyces lividans 66, pp. 79–81, in “Biological, Biochemical and Biomedical Aspects of Actinomycetes”, Szabo, G., Biro, S., and Goodfellow, M., eds., Akadémiai Kiadó, Budapest.Google Scholar
  11. Flett, F., and Cullum, J., 1987, DNA deletions in spontaneous chloramphenicol-sensitive mutants of Streptomyces coelicolor A3(2) and Streptomyces lividans 66, Mol. Gen. Genet., 207: 499–502.PubMedCrossRefGoogle Scholar
  12. Freeman, R. F., Bibb, M. J., Hopwood, D. A., 1977, Chloramphenicol acetyl-transferase-independent chloramphenicol resistance in Streptomyces coelicolor A3(2), J. Gen. Microbiol., 98: 453–465.PubMedGoogle Scholar
  13. Gregory, K. F., and Huang, J. C. C., 1964, Tyrosinase inheritance in Streptomyces scabies. I Genetic recombination, J. Bacteriol., 86: 1281–1286.Google Scholar
  14. Häusler, A., Birch, A., Krek, W., Piret, J., and Hütter, R., 1989, Heterogeneous genomic amplification in Streptomyces glaucescens: Structure, location and junction sequence analysis, Mol. Gen. Genet., 217: 437–446.PubMedCrossRefGoogle Scholar
  15. Hranueli, D., Pigac, J., Smokvina, T., and Alacevic, M., 1983, Genetic interactions in Streptomyces rimosus mediated by conjugation and by protoplast fusion, J. Gen. Microbiol., 129: 1415–1422.PubMedGoogle Scholar
  16. Hütter, R., Birch, A., Häusler, A., Vögtli, M., Madon, J., and Krek, W., 1988, Genome fluidity in Streptomycetes, in “Biology of Actinomycetes ‘88”, Okami, Y., Beppu, T., and Ogawara, H., eds., Japan Scientific Societies Press, Tokyo.Google Scholar
  17. Kendall, K., and Cullum, J., 1986, Identification of a DNA sequence associated with plasmid integration in Streptomyces coelicolor A3(2), Mol. Gen. Genet., 202: 240–245.PubMedCrossRefGoogle Scholar
  18. Kendall, K., Ali-Dunkrah, U., and Cullum, J., 1987, Cloning of the galactokinase gene (galK) from Streptomyces coelicolor A3(2), J. Gen. Microbiol., 133: 721–725.PubMedGoogle Scholar
  19. Pigac, J., and Alacevic, M., 1979, Mapping of oxytetracycline genes on Streptomyces rimosus chromosome, Period biol, 81: 575–582.Google Scholar
  20. Pigac, J., Hranueli, D., Smokvina, T., and Alacevic, M., 1982, Optimal cultural and physiological conditions for handling Streptomyces rimosus protoplasts, Appl. Environ. Microbiol., 44: 1178–1186.PubMedGoogle Scholar
  21. Pigac, J., Vujaklija, D., and Gamulin, V., 1986, Structural segregation of a bifunctional vector pZG1 in Streptomyces lividans and S. rimosus, in “Biological, Biochemical and Biomedical Aspects of Actinomycetes”, Szabo, G., Biro, S., and Goodfellow, M., eds., Akadémiai Kiadó, Budapest.Google Scholar
  22. Pigac, J., Vujaklija, D., Toman, Z., Gamulin, V., and Schrempf, H., 1988, Structural instability of a bifunctional plasmid pZG1 and singlestranded DNA formation in Streptomyces, Plasmid, 19: 222–230.PubMedCrossRefGoogle Scholar
  23. Redshaw, P. A., McCann, P..A., Pentella, M..A., and Pogell, B. M., 1979, Simultaneous loss of multiple differentiated features in aerial mycelium-negative isolates of Streptomyces, J. Bacteriol., 137: 891–899.PubMedGoogle Scholar
  24. Zhou, X., Deng, Z., Firmin, J. L., Hopwood, D. A., and Kieser, T., 1988, Site-specific degradation of Streptomyces lividans DNA during electrophoresis in buffers contaminated with ferrous iron, Nucleic Acids Res., 16: 4341–4352.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • John Cullum
    • 1
  • Fiona Flett
    • 2
  • Birgit Gravius
    • 1
  • Daslav Hranueli
    • 3
  • Kiyotaka Miyashita
    • 4
  • Jasenka Pigac
    • 3
  • Uwe Rauland
    • 1
  • Matthias Redenbach
    • 1
  1. 1.LB GenetikUniversität KaiserslauternKaiserslauternGermany
  2. 2.Department of Biochemistry and Applied Molecular BiologyU.M.I.S.T.ManchesterUK
  3. 3.“PLIVA” Research InstituteZagrebYugoslavia
  4. 4.National Institute of Agro-Environmental SciencesTsukubaJapan

Personalised recommendations