Beta-Lactamase Genes from Streptomyces Species

  • Hiroshi Ogawara
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 55)


Beta-lactamases are produced by a wide range of different prokaryotic cells with great variety in chemical, physical and enzymatic properties (1). Beta-lactamases are referred to as such on the basis of only one common property: they catalyze the hydrolysis of the beta-lactam ring of penicillins and cephalosporins to yield antibacterially inactive products, penicilloic acids and cephalosporoic acids. This causes the pathogenic bacteria to be resistant against beta-lactam compounds. In fact, beta-lactamase is the main mechanism of clinical resistance against many beta-lactam compounds, even at the present time. At the same time, however, these enzymes are also produced by nonpathogenic bacteria such as Streptomyces (2,3) and the cyanobacteria (4). In Streptomyces, betalactamases are produced constitutively and abundantly irrespective of their resistance to beta-lactam antibiotics (2,5). Resistance to betalactams in Streptomyces is due to the changes of the targets of betalactams, penicillin-binding proteins (3).


Transcription Start Site Bacillus Licheniformis Streptomyces Species Cellulase Gene Blue Dextran 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Hamilton-Miller, J. M. T. & J. T. Smith: Beta-lactamases. Academic Press, London, 1979.Google Scholar
  2. 2).
    Ogawara, H.: Production and property of beta-lactamases in Streptomyces. Antimicrob. Agents & Chemother. 8: 402–408, 1975.Google Scholar
  3. 3).
    Ogawara, H.: Antibiotic resistance in the pathogenic and the producing bacteria, with special reference to beta-lactam antibiotics. Microbiol. Rev. 45: 591–619, 1981.PubMedGoogle Scholar
  4. 4).
    Kushner, D. J. & C. Brenil: Penicillinase (beta-lactamase) formation by blue-green algae. Arch. Microbiol. 112: 219–223, 1977.PubMedCrossRefGoogle Scholar
  5. 5).
    Ogawara, H.; S. Hrikawa, S. Shimada-Miyoshi & K. Yasuzawa: Production and property of beta-lactamases in Streptomyces. Comparison of the strains isolated newly and thirty years ago. Antimicrob. Agents & Chemother. 13: 865–870, 1978.Google Scholar
  6. 6).
    Matsuhashi, Y.; T. Murakami, C. Nojiri, H. Toyama, H. Anzai & K. Nagaoka: Mechanism of aminoglycoside-resistance of Streptomyces har-baring resistant genes obtained from antibiotic producers. J. An- tibiotics 38: 279–282, 1985.Google Scholar
  7. 7).
    Nakano, M. M.; H. Mashiko & H. Ogawara: Cloning of the kanamycin resistance gene from kanamycin-producing Streptomyces species. J. Bacteriol. 157: 79–83, 1984.PubMedGoogle Scholar
  8. 8).
    Skeggs, P. A.; J. Thompson & E. Cundliffe: Methylation of 16S ribosomal RNA and resistance to aminoglycoside antibiotics in clones of Streptomyces lividans carrying DNA from Streptomyces tenjimariensis. Mol. Gen. Genet. 200: 415–421, 1985.PubMedCrossRefGoogle Scholar
  9. 9).
    Chater, K. F. & D. A. Hopwood: Antibiotic biosynthesis in Streptomyces, p. 129–150. In “ D. A. Hopwood, and K. F. Chater (ed.), Genetics of bacterial diversity”, Academic Press, London, 1989.Google Scholar
  10. 10).
    Ghuysen, J. M. & B. Joris: The bacterial active-site serine penicillin-interactive proteins family, p. 451–456. In “Y. Okami, T. Beppu, and H. Ogawara (ed.), Biology of actinomycetes ‘88”, Japan Scientific Societies Press, Tokyo, 1988.Google Scholar
  11. 11).
    De Meester F; B. Joris, M. V. Lenzini, P. Dehottay, T. Erpicium, J. Dusart, D. Klein, J. M. Ghuysen, J. M. Frere & J. V. Beeumen: The active sites of the beta-lactamases of Streptomyces cacaoi and Streptomyces albus G. Biochem. J. 244: 427–432, 1987.PubMedGoogle Scholar
  12. 12).
    Thompson, S. T.; K. H. Cass & E. Steliwagen: Blue-dextran Sepharose: An affinity column for the dinucleotide fold in protein. Proc. Natl. Acad. Sci. USA 72: 669–672, 1975.PubMedCrossRefGoogle Scholar
  13. 13).
    Ogawara, H. & S. Horikawa: Purification of beta-lactamase from Streptomyces cellulosae by affinity chromatography on blue Sepharose. J. Antibiotics 32: 1328–1335, 1979.CrossRefGoogle Scholar
  14. 14).
    Bush, K.: Characterization of beta-lactamases. Antimicrob. Agents & Chemother. 33: 259–263, 1989.Google Scholar
  15. 15).
    Lenzini, V. M.; S. Nojima, J. Dusart, H. Ogawara, P. Dohottay, J. M. Frere & J. M. Ghuysen: Cloning and amplified expression in Streptomyces lividans of the gene encoding the extracellular betalactamase from Streptomyces cacaoi. J. Gen. Microbiol. 133: 2915–2920, 1987.PubMedGoogle Scholar
  16. 16).
    Lenzini, M. V.; H. Ishihara, J. Dusart, H. Ogawara, B. Joris, J. B. Beeumen, J. M. Frere & J. M. Ghuysen: Nucleotide sequence of the gene encoding the active site serine beta-lactamase from Streptomyces cacaoi. FEMS Microbiol. Lett. 49: 371–376, 1988.Google Scholar
  17. 17).
    Ogawara, H.; A. Mantoku & S. Shimada: Beta-lactamase in Streptomyces cacaoi. Purification and properties. J. Biol. Chem. 256: 2649–2655, 1981.PubMedGoogle Scholar
  18. 18).
    Lomovskaya, N. D.; N. M. Nkrtumian, N. L. Gostimskaya & V. N. Danilenko: Characterization of temperate actinophage c31 isolated from Streptomyces coelicolor A3(2). J. Virol. 9: 258–262, 1972.PubMedGoogle Scholar
  19. 19).
    Hopwood, D. A.; M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, D. J., Lydiate, C. P. Smith, J. M. Ward & H. Schrempf: Genetic manipulation of Streptomyces. A laboratory manual. The John Innes Foundation, Norwich, 1985.Google Scholar
  20. 20).
    Southern, E. M.: Detection of specific sequence among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517, 1975.PubMedCrossRefGoogle Scholar
  21. 21).
    Forsman, M.; B. Haggstrom, L. Lindgren & B. Jaurin: Molecular analysis of beta-lactamases from species of Streptomyces: comparison of amino acid sequences with those of other beta-lactamases. J. Gen. Microbiol. 136: in press.Google Scholar
  22. 22).
    Smith, C. P. & K. F. Chater: Structure and regulation of controlling sequences for the Streptomyces coelicolor glycerol operon. J. Mol. Biol. 204: 569–580, 1988.PubMedCrossRefGoogle Scholar
  23. 23).
    Bibb, M. J.; G. R. Janssen & J. M. Ward: Cloning and analysis of the promoter region of the erythromycin-resistance gene (ermE) of Streptomyces erythreus. Gene 41: E357 - E368, 1986.CrossRefGoogle Scholar
  24. 24).
    Nakai, R.; S. Horinouchi & T. Beppu: Cloning and nucleotide sequence of a cellulase gene, casA from an alkalophilic Streptomyces strain. Gene 65: 229–238, 1988.PubMedCrossRefGoogle Scholar
  25. 25).
    Bibb, M. J.: Gene expression in Streptomyces–Nucleotide sequences involved in the initiation of transcription and translation, p. 25–34. In “G. Szabo, S. Biro, and M. Goodfellow (ed.), Biological, biochemical and biomedical aspects of actinomycetes”, Akademiai Kiado, Budapest, 1985.Google Scholar
  26. 26).
    Bernan, V.; D. Filpula, W. Herber, M. Bibb & E. Katz: The nucleotide sequence of the tyrosinase gene from Streptomyces antibioticus and characterization of the gene product. Gene 37: 101–110, 1985.PubMedCrossRefGoogle Scholar
  27. 27).
    Ogawara, H. & S. Horikawa: Penicillin-binding proteins of Streptomyces cacaoi, olivaceus and clavuligerus. Antimicrob. Agents Chemother. 17: 1–7, 1980.PubMedGoogle Scholar
  28. 28).
    Himeno, T.; T. Imanaka & S. Aiba: Nucleotide sequence of the penicillinase repressor gene penI of Bacillus licheniformis and regulation of penP and penI by the repressor. J. Bacteriol. 168: 1128–1132, 1986.PubMedGoogle Scholar
  29. 29).
    Imanaka, T.; T. Himeno & S. Aiba: Cloning and nucleotide sequence of the penicillinase antirepressor gene penJ of Bacillus licheniformis. J. Bacteriol. 169: 3867–3872, 1987.PubMedGoogle Scholar
  30. 30).
    Kobayashi, T.; Y. F. Zhu, N. J. Nicholls & J. O. Lampen: A second regulatory gene, blaR1, encoding a potential penicillin-binding protein required for induction of beta-lactamase in Bacillus licheniformis. J. Bacteriol. 169: 3873–3878, 1987.PubMedGoogle Scholar
  31. 31).
    Honore, N.; M. H. Nicolas & S. T. Cole: Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. EMBO J. 5: 3709–3714, 1986.PubMedGoogle Scholar
  32. 32).
    Lindberg, F.; L. Westman & S. Normark: Regulatory components in Citrobacter freundii ampC beta-lactamase induction. Proc. Natl. Acad. Sci. USA 82: 4620–4624, 1985.PubMedCrossRefGoogle Scholar
  33. 33).
    Jaurin, B.; T. Brundstrom, T. Edlund & S. Normark: The E. coli betalactamase attenuator mediates growth rate-dependent regulation. Nature 290: 221–225, 1981.PubMedCrossRefGoogle Scholar
  34. 34).
    Henikoff, S.; G. W. Haughn, J. M. Calvo & J. C. Wallace: A large family of bacterial activator proteins. Proc. Natl. Acad. Sci. USA 85: 6602–6606, 1988.PubMedCrossRefGoogle Scholar
  35. 35).
    Raibaud, O. & M. Schwartz: Positive control of transcription initiation in bacteria. Ann. Rev. Genet. 18: 173–206, 1984.PubMedCrossRefGoogle Scholar
  36. 36).
    Distler, J.; A. Ebert, K. Mansouri, K. Pissowotzki, M. Stockman & W. Piepersberg: Gene cluster for streptomycin biosynthesis in Streptomyces griseus: nucleotide sequence of three genes and analysis of transcriptional activity. Nucl. Acids Res. 15: 8041–8056, 1987.PubMedCrossRefGoogle Scholar
  37. 37).
    Horinouchi, S.; H. Suzuki & T. Beppu: Nucleotide sequence of afsB, a pleiotropic gene involved in secondary metabolism in Streptomyces coelicolor A3(2) and “Streptomyces lividans”. J. Bacteriol. 168: 257–267, 1986.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Hiroshi Ogawara
    • 1
  1. 1.Department of BiochemistryMeiji College of PharmacySetagaya-ku, Tokyo 154Japan

Personalised recommendations