Advertisement

Genetic Analysis of Different Resistance Mechanisms Against the Herbicidal Antibiotic Phosphinothricyl-Alanyl-Alanine

  • Wolfgang Wohlleben
  • Walter Arnold
  • Iris Behrmann
  • Inge Broer
  • Doris Hillemann
  • Alfred Pühler
  • Eckhard Strauch
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 55)

Summary

Streptomyces viridochromogenes Tü494, the producer of phosphinothricyl-alanyl-alanine (Ptt), is sensitive to its own antibiotic. Two phenotypically discernible Ptt-resistant S. viridochromogenes mutants, ES1 and ES2, were isolated and employed to clone resistance genes. Thus, two different DNA fragments both conferring Ptt resistance could be detected. The DNA regions including the resistance genes were sequenced and the gene products were investigated. The first gene (pat) encodes a phosphinothricin N-acetyltransferase which inactivates the antibiotically effective component phosphinothricin. Following modification of the 5’ region, the pat gene was transferred into plants and phosphinothricin-resistant transgenic plants were obtained. The second gene, a glutamine synthetase (GS) gene mediated Ptt resistance in multi-copy state only. The gene product is heat-labile, and the deduced amino acid sequence was shown to be highly homologous to eucaryotic and to Rhizobiaceae GSII-type enzymes. Therefore the gene was named glnII. Southern hybridizations with different Streptomyces strains suggest that they all carry two types of GS genes, g1nA and g1nII.

Keywords

Glutamine Synthetase Glutamine Synthetase Gene NcoI Fragment Clone Resistance Gene Promoter Probe Plasmid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alijah, R., Dorendorf, J., Müller, S., Pühler, A., and Wohlleben, W., 1990, Analysis of phosphinothricyl-alanyl-alanine biosynthesis in Streptomyces viridochromogenes Tü494: Characterization of non-producing mutants and isolation of a biosynthetic gene, manuscript in preparation.Google Scholar
  2. Almassy, R. J., Janson, C. A., Hamlin, R., Xuong, N. H., and Eisenberg, C., 1986, Novel subunit-subunit interaction in the structure of glutamine synthetase Nature, 323: 304–309.PubMedCrossRefGoogle Scholar
  3. Arnold, W., and A. Pühler, 1988, A family of high-copy-number plasmid vectors with single end-label sites for rapid nucleotide sequencing, Gene, 70: 171–179.PubMedCrossRefGoogle Scholar
  4. Baulcombe, D. C., Saunders, G. R., Bevan, M. W., Maya, A. M., and Harrison, B. D., 1986, Expression of biologically active viral satellite DNA from the nuclear genome of transformed plants, Nature, 321: 446–449.CrossRefGoogle Scholar
  5. Bayer, E., Gugel, K. H., Hagele, K., Hagenmeier, H., Jessipow, S., König, W. A., and Zähner, H., 1972, Stoffwechselprodukte von Mikroorganismen: Phosphinothricin und Phosphinothricyl-Alanyl-Alanin, Helv. Chim. Acta, 55: 224–239.PubMedCrossRefGoogle Scholar
  6. Behrmann, I., Hillemann, D., Pühler, A., Strauch, E., and Wohlleben, W., 1990, Overexpression of a Streptomyces viridochromogenes gene (g1nII) encoding an eucaryotic-like glutamine synthetase confers resistance against the antibiotic phosphinothricyl-alanyl-alanine, J. Bacteriol., manuscript submittedGoogle Scholar
  7. Bender, R. A., Janssen, K. A., Resnick, A. D., Blumenberg, M., Foor, F., and Magasanik, B., 1977, Biochemical parameters of glutamine synthetase from Klebsiella aerogenes, J. Bacteriol., 129: 1001–1009.PubMedGoogle Scholar
  8. Bozouklian, H., and Elmerich, C., 1986, Nucleotide sequence of the Azospirillum brasilense Sp7 glutamine synthetase structural gene, Biochimie, 68: 1181–1187.PubMedCrossRefGoogle Scholar
  9. Broer, I., Arnold, W., Wohlleben, W., and Pühler, A., 1989, The Phosphinothricin N-Acetyltransferase Gene as a Selection Marker for Plant Genetic Engineering, in: “Proceedings Appl. Plant Mol. Biol.,” G. Galling, ed., pp. 240–246, Zentralstelle far Weiterbildung, Braunschweig.Google Scholar
  10. Carlson, T.A., and Chelm, B. K., 1986, Apparent eukaryotic origins of glutamine synthetase II from the bacterium Bradyrhizobium japonicum, Nature, 322: 568–570.CrossRefGoogle Scholar
  11. Colombo, G., and Villafranca, J. J., 1986, Aminoacid sequence of Escherichia coli glutamine synthetase deduced from the DNA nucleotide sequence, J. Biol. Chem., 261: 10587–10591.PubMedGoogle Scholar
  12. Colonna-Romano, S., Riccio, A., Guida, M., Defez, R., Lamberti, A., Iaccarino, M., Arnold, W., Priefer, U., and Pühler, A., 1987, Tight linkage of g1nA and a putative regulatory gene in Rhizobium leguminosarum, Nucleic Acids Res., 15: 1951–1964.PubMedCrossRefGoogle Scholar
  13. Diddens, H., Zähner, H., Kraas, E., Göring, W., and Jung, G., 1976, On the transport of tripeptide antibiotics in bacteria, Eur. J. Biochem., 66: 11–23.PubMedCrossRefGoogle Scholar
  14. Gebhardt, C., Oliver., J. E., Forde, B. G., Saarelainen, R., and Miflin, B., 1986, Primary structure and differential expression of glutamine synthetase genes in nodules, roots and leaves of Phaseolus vulgaris, EMBO J., 5: 1429–1435.PubMedGoogle Scholar
  15. Hayward, B. E., Hussain, A., Wilson, R. H., Lyons, A., Woodcock, V., McIntosh, B., and Harris, T. J. R., 1986, The cloning and nucleotide sequence of cDNA for an amplified glutamine synthetase gene from the Chinese hamster, Nucleic Acids Res., 14: 999–1008.PubMedCrossRefGoogle Scholar
  16. Janson, C. A., Kayne, P. S., Almassy, R. J., Grunstein, M., and Eisenberg D., 1986, Sequence of glutamine synthetase from Salmonella typhimurium and implications for the protein structure, Gene, 46: 297–300.PubMedCrossRefGoogle Scholar
  17. Janssen, P. J., Jones, W. A., Jones, D. T., and Woods, D. R., 1988, Molecular analysis and regulation of the glnA gene of the gram-positive anaerobe Clostridium acetobutylicum, J. Bacteriol., 170: 400–408.PubMedGoogle Scholar
  18. Kondo, Y., Shomura, T., Ogawa, Y., Tsuruoka, T., Watanabe, H., Totukawa, K., Suzuki, T., Moriyama, C., Yoshida, J., Inouye, S., and Niída, T., 1973, Studies on a new antibiotic SF-1293, I. Isolation and physicochemical and biological characterization of SF-1293 substances, Sci. Rep. Meiji Seika, 13: 34–41.Google Scholar
  19. Labes, G., Simon, R., and Wohlleben, W., 1990, A rapid method for the analysis of plasmid content and copy number in various Streptomyces grown on agar plates, Nucleic Acids Res., 18(8), in press.Google Scholar
  20. Lea, P. J., Joy, K. W., Ramos, J. L. and Guerrero, M. G., 1984, The action of 2-amino-4-(methylphosphinyl)-butatonic acid (phosphinothricin) and its 2-oxo-derivative on the metabolism of cyanobacteria and higher plants, Phytochem., 23: 1–6.CrossRefGoogle Scholar
  21. Lipman, D. J., and Pearson, W. R., 1985, Rapid and sensitive protein similarity searches, Science 227: 1435–1444.PubMedCrossRefGoogle Scholar
  22. Martin, J. F., and Liras, P., 1989, Organisation and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites, Annu. Rev. Microbiol., 43: 173–206.PubMedCrossRefGoogle Scholar
  23. Muth, G., Nußbaumer, B., Wohlleben, W., and Pühler, A., 1989, A vector system with temperature-sensitive replication for gene disruption and mutational cloning in Streptomycetes, Mol. Gen. Genet., 219: 341–348.CrossRefGoogle Scholar
  24. Rawlings, D. E., Jones, W. A., O’Neill, E. G., and Woods, D. R., 1987, Nucleotide sequence of the glutamine synthetase gene and its controlling region from the acidophilic autotroph Thiobacillus ferrooxidans, Gene, 53: 211–217.PubMedCrossRefGoogle Scholar
  25. Staden, R., and McLachlan, A. D., 1982, Codon preference and its use in identifying protein coding regions in long DNA sequences, Nucleic Acid Res., 10: 141–156.PubMedCrossRefGoogle Scholar
  26. Strauch, E., Wohlleben, W., and Pühler, A., 1988, Cloning of a phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Streptomyces lividans and Escherichia coli, Gene, 63: 65–74.PubMedCrossRefGoogle Scholar
  27. Strauch, M. A., Aronson, A. I., Brown, S. W., Schreier, H. J., and Sonenshein, A. L., 1988, Sequence of the Bacillus subtilis glutamine synthetase gene region, Gene, 71: 257–265.PubMedCrossRefGoogle Scholar
  28. Thompson, C. J., Ward, J. M., and Hopwood, D. A., 1980, DNA cloning in Streptomyces: Resistance genes from antibiotic-producing species, Nature, 286: 525–527.PubMedCrossRefGoogle Scholar
  29. Thompson, C. J., Movva, N. R., Tizard, R., Crameri, R., Davies, J., Lauwereys, M., and Botterman, J., 1987, Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus, EMBO 6: 2519–2523.Google Scholar
  30. Tischer, E., DasSarma, S., and Goodman, D. M., 1986, Nucleotide sequence of an alfalfa glutamine synthetase gene, Mol. Gen. Genet., 203: 221–229.CrossRefGoogle Scholar
  31. Tuner, N. E., Robinson, S. J., and Haselkorn, R., 1983, Different promoters for the Anabaena glutamine synthetase gene during growth using molecular or fixed nitrogen, Nature, 306: 337–342.CrossRefGoogle Scholar
  32. Wohlleben, W., Muth, G., Birr, E., and Pühler, A., 1986, A vector system for cloning in Streptomyces and E. coli, in: “Sixth Int. Sym. on Actinomycetes Biology,”G. Szabó, S. Biró, and M. Goodfellow, eds., pp. 99–101, Akadiémiai Kiadó, Budapest.Google Scholar
  33. Wohlleben, W., Arnold. W., Broer, I., Hillemann, D., Strauch, E., and Affiler, A., 1988, Nucleotide sequence of the phosphinothricin Nacetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Nicotiana tabacum, Gene, 70: 25–37.PubMedCrossRefGoogle Scholar
  34. Wohlleben, W., Arnold, W., Bissonnette, L., Pelletier, A., Tanguay, A., Roy, P. H., Gamboa, G. C., Barry, G. F., Aubert, E., Davies, J., and Kagan, S. A., 1989, On the evolution of Tn21-like multiresistance transposons: Sequence analysis of the gene (aacCl) for gentamicin acetyltransferase-3-I (AAC(3)-I), another member of the Tn21-based expression cassette, Mol. Gen. Genet., 217: 202–208.PubMedCrossRefGoogle Scholar
  35. Ward, J. M., Janssen, G. R., Kieser, T., Bibb, M. J., Buttner, M. J., and Bibb, M. J., 1986, Construction and characterization of a series of multi-copy promoter probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicators, Mol. Gen. Genet., 203: 468–478.PubMedCrossRefGoogle Scholar
  36. Wray, L. V. Jr., and Fisher, S. H., 1988, Cloning and nucleotide sequence of the Streptomyces coelicolor gene encoding glutamine synthetase, Gene, 71: 247–256.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Wolfgang Wohlleben
    • 1
  • Walter Arnold
    • 1
  • Iris Behrmann
    • 1
  • Inge Broer
    • 1
  • Doris Hillemann
    • 1
  • Alfred Pühler
    • 1
  • Eckhard Strauch
    • 1
  1. 1.Fakultät Biologie, Lehrstuhl GenetikUniversität BielefeldBielefeld 1Germany

Personalised recommendations