Advertisement

Evolution of Antibiotic Resistance and Production Genes in Streptomycetes

  • Wolfgang Piepersberg
  • Peter Heinzel
  • Kambiz Mansouri
  • Ulrike Mönnighoff
  • Klaus Pissowotzki
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 55)

Abstract

Increasing amounts of DNA and protein sequence data became available recently from genetic studies on antibiotic production and resistance in both producing and resistant bacteria. This sequence information mirrors the current state of a long-term evolution which obviously very early have lead to complete pathways, which in later stages have diversified or degenerated, or became individualized especially in the actinomycete group of microorganisms. Examples are the pathways for betalactams polyketides, and aminoglycosides (Hershberger et al., 1989; Cundliffe, 1989; Martin and Liras, 1989). Also, convergently evolved genetic traits have to be postulated. The resistance genes coding for antibiotic or target site modifying enzymes (phospho-, acetyl-, adenylyl-, and methyltransferases) seem to have a central position in the overal development which created the secondary metabolic pathways for the respective — mostly ribosomal targeted — antibiotics and the concomitant gathering of genes to larger clusters (Piepersberg et al., 1988). Also, they could be derived from other control genes such as for regulatory protein kinases or for ribosomal processing.

Keywords

Chloramphenicol Acetyl Transferase Secondary Metabolic Pathway Regulatory Protein Kinase Additional Amino Acid Residue Streptomycin Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van Buul, C.P.J.J., and van Knippenberg, P.H., 1985, Nucleotide sequence of the ksgA gene of Escherichia coli, comparison of methyltransferases effecting dimethylation of adenosine in ribosomal RNA, Gene, 38: 65.PubMedCrossRefGoogle Scholar
  2. Cundliffe, E., 1989, How antibiotic-producing organisms avoid suicide, Ann. Rev. Microbiol., 43: 207.CrossRefGoogle Scholar
  3. Distler, J., Ebert, A., Mansouri, K., Pissowotzki, K., Stockmann, M., and Piepersberg, W., 1987, Gene cluster for streptomycin biosynthesis in Streptomyces griseus, nucleotide sequence of three genes and analysis of transcriptional activity, Nucleic Acids Res., 15: 8041.PubMedCrossRefGoogle Scholar
  4. Distler, J., Mansouri, K., Pissowotzki, K., Piepersberg, W., 1989, Genetics and regulation of streptomycin production in streptomycetes. in: DECHEMA Biotechnology Conferences 3, p. 307, VCH Verlagsgesellschaft, Weinheim.Google Scholar
  5. Hediger, M.A., Johnson, D.F., Nierlich, D.P., and Zabin, F., 1985, DNA sequence of the lactose operon: the lacA gene and the transcription termination region, Proc. Natl. Acad. Sci. USA, 82: 6414.PubMedCrossRefGoogle Scholar
  6. Heinzel, P., Werbitzky, O., Distler, J., and Piepersberg, W., 1988, A second streptomycin resistance gene from Streptomyces griseus codes for streptomycin-3“-phosphotransferase. Relationships between antibiotic and protein kinases, Arch. Microbiol., 150: 184.PubMedCrossRefGoogle Scholar
  7. Hershberger, C.L., Queener, S.W., and Hegeman, G.,1989, “Genetics and Molecular Biology of Industrial Microorganisms,” American Society for Microbiology, Washington DC.Google Scholar
  8. Hopwood, D.A., Bibb, M.J., Chater, K.F., Kieser, T., Bruton, C. J., Kieser, H.M., Lydiate, D.J., Smith, C.P., Ward, J.W., and Schrempf, H., 1985, “Genetic Manipulation of Streptomyces. A Laboratory Manual,” The John Innes Foundation, Norwich.Google Scholar
  9. Hoshiko, S., Nojiri, C., Matsunaga, K., Katsumata, K., Satoh, E., and Nagaoka, K., 1988, Nucleotide sequence of the ribostamycin phosphotransferase gene and its control region in Streptomyces ribosidificus, Gene, 68: 285.PubMedCrossRefGoogle Scholar
  10. Mansouri, K., Pissowotzki, K., Distler, J., Mayer,G., Heinzel, P., Braun, C., Ebert, A., and Piepersberg, W., 1989, Genetics of streptomycin production, in: “Genetics and Molecular Biology of Industrial Microorganisms,” C.L. Hersh-berger, S.W. Queener, and G. Hegeman, ed., American Society for Microbiology, Washington DC.Google Scholar
  11. Martin, P., Julien, E., and Courvalin, P., 1988, Nucleotide sequence of Acinetobacter baumannii aphA-6 gene: evolutionary and functional implications of sequence homologies with nucleotide binding proteins, kinases and other aminoglycoside modifying enzymes, Mol. Microbiol., 2: 615.Google Scholar
  12. Martin, J.F., and Liras, P., 1989, Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites, Ann. Rev. Microbiol., 43: 173.CrossRefGoogle Scholar
  13. Mayer, G., Vögtli, M., Pissowotzki, K., Hütter, R., and Piepersberg, W., 1988, Colinearity of streptomycin production genes in two species of Streptomyces. Evidence for occurence of a second amidinotransferase gene, Mol. Genet. (Life Sci. Adv.), 7: 83.Google Scholar
  14. Murray, I.A., Gil, J.A., Hopwood, D.A., and Shaw, W.V., 1989, Nucleotide sequence of the chloramphenicol acetyltransferase gene of Streptomyces acrimycini, Gene, 85: 283.PubMedCrossRefGoogle Scholar
  15. Piepersberg, W., Distler, J., Heinzel, P., and Perez-Gonzalez, J.A., 1988, Antibiotic resistance by modification: Many resistance genes could be derived from cellular control genes in actinomycetes. - A hypothesis, Actinomycetol., 2: 83.Google Scholar
  16. Scholz, P., Haring, V., Wittmann-Liebold, B., Ashman, K., Bagdasarian, M. and Scherzinger, E., 1989, Complete nucleotide sequence and gene organization of the broad-hostrange plasmid RSF1010, Gene, 75: 271.PubMedCrossRefGoogle Scholar
  17. Shaw„ K.J., Cramer, C.A., Rizzo, M., Mierzwa, R., Gewain, K., Miller, G.H., and Hare, R.S., 1989, Isolation, characterization, and DNA sequence analysis of an AAC(6’)-II gene from Pseudomonas aeruginosa, Antimicrob. Agents Chemother., 33: 2052.PubMedGoogle Scholar
  18. Stephens, P.E., Darlison, M.G., Lewis, H.M., and Guest, J.R., 1983, The pyruvate dehydrogenase complex of Escherichia coli K12. Nucleotide sequence encoding the dihydrolipoamide acetyltransferase component, Eur. J. Biochem., 133: 481.PubMedCrossRefGoogle Scholar
  19. Surin, B.P., and Downie, J.A., 1988, Characterization of the Rhizobium leguminosarum genes nodLMN involved in efficient host-specific nodulation, Mol. Microbiol., 2: 173.PubMedCrossRefGoogle Scholar
  20. Tanaka, S., Matsushita, Y., Yoshikawa, A., and Isono, K., 1989, Cloning and molecular characterization of the gene rimL which encodes an enzyme acetylating ribosomal protein L12 of Escherichia coli, Mol. Gen. Genet., 217: 289.PubMedCrossRefGoogle Scholar
  21. Tenover, F.C., Gilbert, T., and O’Hara, P., 1989, Nucleotide sequence of a novel kanamycin resistance gene, aphA-7, from Campylobacter jeluni and comparison to other kanamycin phosphotransferase genes. Plasmid 22: 52–58, 1989.Google Scholar
  22. Zähner, H., Drautz, H., and Weber, W., 1982, Novel approaches to metabolite screening, in: “Bioactive Microbial Products: Search and discovery,” J.D. Bu’Lock, L.J. Nisbet, and D.J. Winstanley, ed., Academic Press, London.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Wolfgang Piepersberg
    • 1
  • Peter Heinzel
    • 1
  • Kambiz Mansouri
    • 1
  • Ulrike Mönnighoff
    • 1
  • Klaus Pissowotzki
    • 1
  1. 1.Chemische MikrobiologieBergische Universität GH WuppertalWuppertal 1Germany

Personalised recommendations