Enzymes and Coenzymes of the Terminal Part of the Antibiotic Biosynthetic Pathway in Streptomycetes Producing Tetracyclines

  • J. Novotná
  • J. Neužil
  • I. Vančurová
  • V. Běhal
  • Z. Hošt’álek
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 55)


In spite of more than four decades of research on microbial antibiotic biosynthesis, little appears to be known about the enzymology of antibiotic production. Details about most of individual enzymes involved in the definitive biosynthetic pathway of tetracyclines, in which the sequence of essential reaction steps was ascertained more than 20 years ago, have also remained unknown.


Terminal Part Cholesterol Oxidase Flavin Adenine Dinucleotide Streptomyces Griseus Schizophyllum Commune 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. A. Miller, J. H. Hash, M. Lincks, and N. Bohonos, Biosynthesis of 5-hydroxytetracycline, Biochem. Biophys. Res. Commun. 18: 325 (1965).CrossRefGoogle Scholar
  2. 2.
    I. Vančrová, M. Flieger, J. Volc, M. J. Beneš, J. Novotná, J. Neužil, and V. Běhal, Partial purification and characterization of anhydrotetracycline oxygenase of Streptomyces aureofaciens, J. Basic Microbiol. 27: 529 (1987).CrossRefGoogle Scholar
  3. 3.
    I. Vančrová, J. Volc, M. Flieger, J. Neužil, J. Novotnáa, J. Vlach, and V. Běhal, Isolation of pure anhydrotetracycline oxygenase from Streptomyces aureofaciens, Biochem. J. 253: 263 (1988).Google Scholar
  4. 4.
    V. Erban, L. V. Trilisenko, J. Novotnáa, V. Běhal, I. S. Kulaev, and Z. Hošt’álek, Subcellular localization of enzymes in Streptomyces aureofaciens and its alteration by benzyl thiocyanate. II. Anhydrotetracycline oxygenase and glucose-6phosphate dehydrogenase, Folia Microbiol 32: 411 (1987).CrossRefGoogle Scholar
  5. 5.
    J. Novotnáa, J. Neužil, V Běhal, I. Vančurova, and Z. Hošt’álek, A simultaneous assay for anhydrotetracycline oxygenase and tetracycline dehydrogenase using diode array spectrophotometry (to be published).Google Scholar
  6. 6.
    P. A. Miller, Cell-free studies on the biosynthesis of the tetracyclines, Dev. Industr. Microbiol. 8: 96 (1967).Google Scholar
  7. 7.
    I. Vančurova, Anhydrotetracycline oxygenase and enzymes assimilating ammonium ions in Streptomyces aureofaciens, Ph.D. Thesis (in Czech), Institute of Microbiology, Prague (1988).Google Scholar
  8. 8.
    L. G. Howell, T. Spector, V. Massey, Purification and properties of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens, J. Biol. Chem. 247: 4340 (1972).PubMedGoogle Scholar
  9. 9.
    M. Fukuyama, and Y. Miyake, Purification and some properties of cholesterol oxidase from Schizophyllum commune with covalently bound flavin. J. Biochem. 85: 1183 (1979).PubMedGoogle Scholar
  10. 10.
    C. Binnie, M. Warren, and M. J. Butler, Cloning and heterologous expression in Streptomyces lividans of Streptomyces rimosus genes involved in oxytetracycline biosynthesis, J. Bacteriol. 171: 887 (1989).PubMedGoogle Scholar
  11. 11.
    J. Hofsteenge, J. M. Vereijken, W. J. Weijer, J. J. Beintema, R. K. Wierenga, and J. Drenth, Primary and tertiary structure studies of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Isolation and alignment of the CNBr peptides; interactions of the protein with flavin adenine dinucleotide, Eur. J. Biochem. 113: 141 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    T. Ishizaki, N. Hirayama, H. Shinkawa, O. Nimi, and Y. Murooka, Nucleotide sequence of the gene for cholesterol oxidase from a Streptomyces sp., J. Bacteriol. 171: 596 (1989).PubMedGoogle Scholar
  13. 13.
    V. Erban, V. Běhal, L. V. Trilisenko, J. Neužil, and Z. Hošt’álek, Tetracycline dehydrogenase: spectrophotometric assay, properties, and localization in strains of Streptomyces aureofaciens, J. Appt Biochem. 7: 341 (1985).Google Scholar
  14. 14.
    J. Neužil, J. Novotná, I. Vančurová, V. Běhal, and Z. Hošt’álek, A direct-injection reversed-phase liquid chromatographic micromethod for studying the kinetics of terminal reactions of tetracycline biosynthesis, AnaL Biochem. 181: 125 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    J. Novotná, J. Neužil, and Z. Hošt’álek, Spectrophotometric identification of 8-hydroxy-5-deazaflavin:NADPH oxidoreductase activity in streptomycetes producing tetracyclines, FEMS MicrobioL Lett. 59: 241 (1989).CrossRefGoogle Scholar
  16. 16.
    A. P. M. Eker, J. K. C. Hessels, and R. Meerwaldt, Characterization of an 8-hydroxy-5-deazaflavin:NADPH oxidoreductase from Streptomyces griseus, Biochim. Biophys. Acta 990: 80 (1989).PubMedCrossRefGoogle Scholar
  17. 17.
    P. A. Miller, N. O. Sjolander, S. Nalesnyk, N. Arnold, S. Johnson, A. P. Doerschuk, and J. R. D. McCormick, Cosynthetic factor I, a factor involved in hydrogen-transfer in Streptomyces aureofaciens, J. Am. Chem. Soc. 82: 5002 (1960).CrossRefGoogle Scholar
  18. 18.
    J. R. D. McCormick, and G. O. Morton, Identity of cosynthetic factor 1 of Streptomyces aureofaciens and fragment F0 from coenzyme F420 of Methanobacterium species, J. Am. Chem. Soc. 104: 4014 (1982).CrossRefGoogle Scholar
  19. 19.
    A. P. M. Eker, A. Pol, P. van der Meyden, and G. D. Vogels, Purification and properties of 8-hydroxy-5-deazaflavin derivatives from Streptomyces griseus, FEMS MicrobioL Lett. 8: 161 (1980).CrossRefGoogle Scholar
  20. 20.
    L. Daniels, N. Bakhiet, and K. Harmon, Widespread distribution of a 5-deazaflavin cofactor in actinomyces and related bacteria, System. Appl. Microbiol. 6: 12 (1985).CrossRefGoogle Scholar
  21. 21.
    M. S. T. Kuo, D. A. Yurek, J. H. Coats, G, P. Li, Isolation and Identification of 7,8-didemethyl-8-hydroxy-5-deazariboflavin, an unusual cosynthetic factor in streptomycetes, from Streptomyces lincolnensis, J. Antibiotics 42: 475 (1989).CrossRefGoogle Scholar
  22. 22.
    J. H. Coats, G. P. Li, M. S. T. Kuo, D. A. Yurek, Discovery, production, and biological assay of an unusual flavenoid cofactor involved in lincomycin biosynthesis, J. Antibiotics 42: 472 (1989).CrossRefGoogle Scholar
  23. 23.
    L. G. M. Gorris, C. van der Drift, G. D. Vogels, Separation and quantification of cofactors from methanogenic bacteria by high-performance liquid chromatography: optimum and routine analyses, J. Microbiol Meth. 8: 175 (1988).CrossRefGoogle Scholar
  24. 24.
    M. W. Peck, and D. B. Archer, Methods for the quantification of methanogenic bacteria, Int. Industr. Biotechnol. 9: 5 (1989).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. Novotná
    • 1
  • J. Neužil
    • 1
  • I. Vančurová
    • 1
  • V. Běhal
    • 1
  • Z. Hošt’álek
    • 1
  1. 1.Institute of MicrobiologyCzechoslovak Academy of SciencesPrague 4Czechoslovakia

Personalised recommendations