Advertisement

Cephamycin Production by Streptomyces Clavuligerus

  • A. L. Demain
  • J. M. Piret
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 55)

Abstract

The classical β-lactam antibiotics can be divided into hydrophobic and hydrophilic fermentation products. The hydrophobic members, e.g. benzylpenicillin (penicillin G) and phenoxymethylpenicillin (penicillin V), contain non-polar side chains, e.g. phenylacetate and phenoxyacetate, respectively, and are made only by filamentous fungi; the best known of these is Penicillium chrysogenum. The hydrophilic types are penicillin N, cephalosporins and 7-a-methoxycephalosporins (cephamycins) which are made by fungi, actinomycetes and unicellular bacteria. They all contain the polar side chain, D-α-aminoadipate.

Keywords

Glutamine Synthetase Penicillium Chrysogenum Carbamyl Phosphate Cyclase Gene Aminoadipic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agayn, V. (1990). Master of Science Thesis, Massachusetts Institute of Technology, Cambridge, MassachusettsGoogle Scholar
  2. Aharonowitz, Y. (1980). Ann. Rev. Microbiol. 34, 209.CrossRefGoogle Scholar
  3. Aharonowitz, Y., and Demain, A. L. (1977). Arch. Microbiol. 115, 169.PubMedCrossRefGoogle Scholar
  4. Aharonowitz, Y., and Demain, A. L. (1978). Antimicrob. Agents Chemother. 14, 159.PubMedGoogle Scholar
  5. Aharonowitz, Y., and Demain, A. L. (1979). Can. J. Microbiol. 25, 61.PubMedCrossRefGoogle Scholar
  6. Aharonowitz, Y., Mendelovitz, S., Kirenberg, F., and Kufer, V. (1984). J. Bacteriol. 157, 337.PubMedGoogle Scholar
  7. Bailey, C.R., Butler, M.J., Normansell, I.D., Rowlands, R.T. and Winstanley, D.J. (1984). Biol Technology 2, 808.Google Scholar
  8. Bailey, C.R. and Winstanley, D.J. (1986). J. Gen. Microbiol. 132, 2945.PubMedGoogle Scholar
  9. Banko, G., Wolfe, S., and Demain, A. L. (1986). Biochem. Biophys. Res. Commun. 137, 528.PubMedCrossRefGoogle Scholar
  10. Banko, G., Demain, A. L., and Wolfe, S. (1987). J. Amer. Chem. Soc. 109, 2858.CrossRefGoogle Scholar
  11. Brava, A. F., Wolfe, S., and Demain, A. L. (1985). Can. J. Microbiol. 31, 736.CrossRefGoogle Scholar
  12. Brava, A. F., Paiva, N. P., and Demain, A. L. (1986a). J. Gen. Microbiol. 132, 1305.Google Scholar
  13. Brava, A. F., Wolfe, S., and Demain, A. L. (1986b). Arch. Microbiol. 146, 46.CrossRefGoogle Scholar
  14. Brewer, S. J., Farthing, J. E., and Turner, M. K. (1977). Biochem. Soc. Trans. 5, 1024.PubMedGoogle Scholar
  15. Brewer, S. J., Taylor, P. M., and Turner, M. K. (1980). Biochem. J. 185, 555.PubMedGoogle Scholar
  16. Carr, L. G., Skatrud, P. L., Scheetz, M. E. II, Queener, S. W., and Ingolia, T. D. (1986). Gene 48, 257.PubMedCrossRefGoogle Scholar
  17. De Jong, L., Albracht, S. P. J., and Kemp, A. (1982). Biochim. Biophys. Acta 704, 326.PubMedCrossRefGoogle Scholar
  18. Dotzlaf, J. E., and Yeh, W.-K. (1987). J. Bacteriol. 169, 1611.PubMedGoogle Scholar
  19. Fawcett, P. A., Usher, J. J., and Abraham, E. P. (1976). In “Second International Symposium on the Genetics of Industrial Microorganisms” (Macdonald, K. D.,ed.), p. 129. Academic Press, New York.Google Scholar
  20. Felix, H. R., Peter, H. H., and Treichler, H. J. (1981). J. Antibiot. 34, 567.PubMedCrossRefGoogle Scholar
  21. Fujisawa, Y., Kikuchi, M., and Kanzaki, T. (1977). J. Antibiot. 30, 775.PubMedCrossRefGoogle Scholar
  22. Garcia-Domingues, M., Martin, J.F., Mahro, B., Demain, A.L. and Liras, P. (1987). Appl. Environ. Microbiol. 53, 1376.Google Scholar
  23. Hood, J. D., Elson, A., Gilpin, M. L., and Brown, A. G. (1983). J. Chem. Soc. Chem. Commun. 1187.Google Scholar
  24. Hook, D. J., Chang, L. T., Elander, R. P., and Morin, R. B. (1979). Biochem. Biophys. Res. Commun. 87, 258.PubMedCrossRefGoogle Scholar
  25. Hopwood, D.A. (1988). In “Biology of the Actinomycetes ‘88” (Okami, Y., Beppu, T., Ogawara, H.,eds.), p. 3, Japan Scientific Press, Tokyo.Google Scholar
  26. Hu, W. S., Brana, A. F., and Demain, A. L. (1984). Enzyme Microb. Technol. 6, 155.CrossRefGoogle Scholar
  27. Ingolia, T.D. and Queener, S.W. (1989). Med. Chem. Revs. 9, 245.Google Scholar
  28. Jensen, S. E., Westlake, D. W. S., and Wolfe, S. (1983). Can. J. Microbiol. 29, 1526.PubMedCrossRefGoogle Scholar
  29. Jensen, S. E., Westlake, D. W. S., and Wolfe, S. (1985). J. Antibiot. 38, 263.PubMedCrossRefGoogle Scholar
  30. Katz, E., Thompson, C.J. and Hopwood, D.A. (1983). J. Gen. Microbiol. 129, 2703.PubMedGoogle Scholar
  31. Kern, B. A., Hendlin, D., and Inamine, E. (1980). Antimicrob. Agents Chemother. 17, 679.PubMedGoogle Scholar
  32. Kohsaka, M., Demain, A. L. (1976). Biochem. Biophys. Res. Commun. 70, 465.PubMedCrossRefGoogle Scholar
  33. Konomi, T., Herchen, S., Baldwin, J. E., Yoshida, M., Hunt, N. A., and Demain A. L. (1979). Biochem. J. 184, 427.PubMedGoogle Scholar
  34. Kovacevic, S., Weigel, B.J., Tobin, M.B., Ingolia, T.D. and Miller, R.J. (1989). J. Bacteriol. 171, 754.PubMedGoogle Scholar
  35. Kupka, J., Shen, Y.-Q., Wolfe, S., and Demain, A. L. (1983a). Can. J. Microbiol. 29, 488.PubMedCrossRefGoogle Scholar
  36. Lebrihi, A., Germain, P., and Lefebvre, G. (1987). Appl. Microbiol. Biotechnol. 26, 130.CrossRefGoogle Scholar
  37. Lebrihi, A., Lefebvre, G., and Germain, P. (1988a). Appl. Microbiol. Biotechnol. 28, 39.Google Scholar
  38. Lebrihi, A., Lefebvre, G., and Germain, P. (1988b). Appl. Microbiol. Biotechnol. 28, 44.Google Scholar
  39. Leskiw, B. W., Aharonowitz, Y., Mevarech, M., Wolfe, S., Vining, L. C., Westlake, D. W. S., and Jensen, S. E. (1988). Gene 62, 187.PubMedCrossRefGoogle Scholar
  40. Liersch, M., Nuesch, J., and Treichler, H. J. (1976). In “ Second International Symposium on the Genetics of Industrial Microorganisms ” (K. D. Macdonald, ed.). p. 179. Academic Press, New York.Google Scholar
  41. Lubbe, C., Jensen, S. E., and Demain, A. L. (1984). FEMS Microbiol. Lett. 25, 75.CrossRefGoogle Scholar
  42. Lubbe, C., Wolfe, S., and Demain, A. L. (1985). Arch. Microbiol. 140, 317.PubMedCrossRefGoogle Scholar
  43. Lubbe, C., Wolfe, S., and Demain, A. L. (1986). Appl. Microbiol. Biotechnol. 23, 367.Google Scholar
  44. Madduri, K., Studdard, C. and Vining, L.C. (1989). J. Bacterial. 171, 299.Google Scholar
  45. Mahro, B., and Demain, A. L. (1987). Appl. Microbiol. Biotechnol. 27, 272.CrossRefGoogle Scholar
  46. Mendelovitz, S., and Aharonowitz, Y. (1982). Antimicrob. Agents Chemother. 21, 74.PubMedGoogle Scholar
  47. Mendelovitz, S., and Aharonowitz, Y. (1983). J. Gen. Microbiol. 129, 2603.Google Scholar
  48. Miller, J.R. and Ingolia, T.D. (1989). Molec. Microbiol. 3, 689.CrossRefGoogle Scholar
  49. O’Sullivan, J., and Abraham, E. P. (1980). Biochem. J. 186, 613.PubMedGoogle Scholar
  50. O’Sullivan, J., Bleaney, R. C., Huddleston J. A., and Abraham E.P. (1979a). Biochem. J. 184, 421.PubMedGoogle Scholar
  51. O’Sullivan, J., Aplin, R. T., Stevens, C. M., and Abraham, E. P. (1979b) Biochem. J. 179, 47.PubMedGoogle Scholar
  52. Pang, C. P., White, R. L., Abraham, E. P., Crout, D. H. G., Lutstorf, M., Morgan, P. J., and Derome, A. E. (1984). Biochem. J. 222, 777.PubMedGoogle Scholar
  53. Piret, J., Resendiz, B., Mahro, B., Zhang, J., Serpe, E., Romero, J., Connors, N. and Demain, A.L. (1990). Appl. Microbiol. Biotechnol. 32, 560.PubMedCrossRefGoogle Scholar
  54. Ramon, D. Carramolino, L., Patino, C., Sanchez, F., and Penalva, M. A. (1987). Gene 57, 171.PubMedCrossRefGoogle Scholar
  55. Rollins, M. J., Westlake, D. W. S., Wolfe, S., and Jensen, S. E. (1988). Can. J. Microbiol. 34, 1196.PubMedCrossRefGoogle Scholar
  56. Romero, J., Liras, P., and Martin, J. F. (1984). Appl. Microbiol. Biotechnol. 20, 318.CrossRefGoogle Scholar
  57. Romero, J., Liras, P., and Martin, J. F. (1988). Appl. Microbiol. Biotechnol. 27, 510.Google Scholar
  58. Samson, S. M., Belagaje, R., Blankenship, D. T., Chapman, J. L., Perry, D., Skatrud, P. L., Frank, R. M., Abraham, E. P., Baldwin, J. E., Queener, S. W., and Ingolia, T. D. (1985). Nature 318, 191.PubMedCrossRefGoogle Scholar
  59. Samson, S. M., Chapman, J. L., Belgaje, R., Queener, S. W., and Ingolia, T. D. (1987b). Proc. Natl. Acad. Sci. USA 84, 5705.PubMedCrossRefGoogle Scholar
  60. Sawada, Y., Hunt, N. A., and Demain, A. L. (1979). J. Antibiot. 32, 1303.PubMedCrossRefGoogle Scholar
  61. Scheidegger, A., Kuenzi, M. T., and Nuesch, J. (1984). J. Antibiot. 37, 522.PubMedCrossRefGoogle Scholar
  62. Serpe, E. (1990). Master of Science Thesis. Northeastern University, Boston, Massachusetts.Google Scholar
  63. Shen, Y.-Q., Wolfe, S., and Demain, A. L. (1984a). Enzyme Microb. Technol. 6, 402.CrossRefGoogle Scholar
  64. Shiffman, D., Mevarech, M., Jensen, S. E., Cohen, G., and Aharonowitz, Y. (1988). Mol. Gen. Genet. 214, 562.PubMedCrossRefGoogle Scholar
  65. Turner, M. K., Farthing, J. E., and Brewer, S. J. (1978). Biochem. J. 173, 839.PubMedGoogle Scholar
  66. Usui, S. and Yu, C.-A. (1989). Biochim. Biophys. Acta 999, 78.PubMedCrossRefGoogle Scholar
  67. Weigel, B. J., Burgett, S. G., Chen, V. J., Skatrud, P. L., Frolik, C. A., Queener, S. W., and Ingolia, T. D. (1988). J. Bacteriol. 170, 3817.PubMedGoogle Scholar
  68. Whitney, J. D., Brannon, D. R., Mabe, J. A., and Wicker, K. J. (1972). Antimicrob. Agents Chemother. 1, 247.PubMedGoogle Scholar
  69. Zhang, J., Wolfe, S., and Demain, A. L. (1989a). Can. J. Microbiol. 35, 399.CrossRefGoogle Scholar
  70. Zhang, J., Wolfe, S., and Demain, A. L. (1989b). FEMS Microbiol. Lett. 57, 145.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • A. L. Demain
    • 1
  • J. M. Piret
    • 2
  1. 1.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Northeastern UniversityBostonUSA

Personalised recommendations