Candida Albicans: Cell Wall Physiology and Metabolism

  • M. G. Shepherd
  • P. K. Gopal
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 50)


The cell wall is of considerable importance for a variety of reasons: it forms the contact point for adhesion of the fungus to host cells; it is the rigid structure which confers mechanical stability on the cell and maintains its characteristic shape; it acts as a protective barrier; it contains components that act as immunogenic determinants and immunomodulators and it is intimately involved in the regulation of secreted hydrolytic enzymes. The cell wall has also attracted interest as a potential target for novel antifungal agents. This is because the glucans and chitin of the wall are found in the pathogen but not the host and, therefore, these compounds and particularly the enzymes involved in their biosynthesis are potentially safe targets for antifungal agents. Finally, in order for us to understand fungal morphogenesis we need to know the mechanisms of wall synthesis and the assembly of the wall leading to its final architecture because it is the temporal and spatial arrangement of the wall components that dictate the final shape of the cell.


Candida Albicans Germ Tube Hyphal Cell Candida Albicans ATCC Outer Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.G.Shepherd, Cell envelope of Candida albicans, CRC Crit.Rev. Microbiol., 15: 7 (1987).CrossRefGoogle Scholar
  2. 2.
    M.G.Shepherd, R.T.M.Poulter, P.A.Sullivan, Candida albicans: Biolog, genetics, and pathogenicity, Ann.Rev.Microbiol., 39: 579 (1985).CrossRefGoogle Scholar
  3. 3.
    F.C.Odds, “Candida and Candidosis. A Review and Bibliography”, 2nd Edition, Bailliere Tindall, London (1988).Google Scholar
  4. 4.
    E.Reiss, “Molecular Immunology of Mycotic and Actinomycotic Infection”, Elsevier, New York (1986).Google Scholar
  5. 5.
    M.G.Shepherd, Y.Y.Chiew, S.P.Ram, P.A.Sullivan, Germ tube induction in Candida albicans, Can.J.Microbiol., 26: 21 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    C.T.Bishop, F.Blank, P.E.Gardner, The cell wall polysaccharides of Candida aibicans: glucan, mannan and chitin, Can.J.Chem., 38: 869 (1960).CrossRefGoogle Scholar
  7. 7.
    F.W.Chattaway, M.R.Holmes, A.J.E.Barlow, Cell wall composition of the mycelial and blastospore forms of Candida albicans, J.Gen.Microbiol., 51: 367 (1968).PubMedGoogle Scholar
  8. 8.
    H.F.Hasenclever and W.O.Mitchell, A study of yeast surface antigens by agglutination inhibition, Sabouraudia, 3: 288 (1964).PubMedCrossRefGoogle Scholar
  9. 9.
    P.A.Sullivan, Y.Y.Chiew, C.Molloy, M.D.Templeton, M.G.Shepherd, An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation, Can.J.Microbiol., 29: 1514 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    R.J.Yu, C.T.Bishop, F.P.Cooper, H.F.Hasenclever, F.Blank, Structural studies of mannans from Candida aibicans (serotype A and B) Candida parapsilosis, Candida stellatoidea and Candida tropicalis, Can.J.Chen., 45: 2205 (1967).CrossRefGoogle Scholar
  11. 11.
    P.C.Braun and R.A.Calderone, Chitin synthesis in Candida albicans: comparison of yeast and hyphal forms, J.Bacteriol., 133: 1472 (1978).PubMedGoogle Scholar
  12. 12.
    A.Cassone, N.Simonetti, V.Stippoli, Ultrastructural changes in the wall during germ-tube formation from blastospores of Candida albicans, J.Gen.Microbiol., 77: 417 (1973).PubMedGoogle Scholar
  13. 13.
    W.Djaczenko, A.Cassone, Visualization of new ultrastructural components in the cell wall of Candida albicans with fixatives containing TAPO, J.Cell Biol., 52: 186 (1971).CrossRefGoogle Scholar
  14. 14.
    M.J.Hubbard, P.A.Sullivan, M.G.Shepherd, Morphological studies of N-acetylglucosamine induced germ tube formation by Candida albicans, Can.J.Microbiol., 31: 696 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    D.Poulain, G.Tronchin, J.F.Dubremetz, J.Biguet, Ultrastructure of the cell wall of Candida aibicans blastospores: study of its constitutive layers by the use of a cytochemical technique revealing polysaccharides, Ann.Microhiol., 129A: 141 (1978).Google Scholar
  16. 16.
    C.Scherwitz, R.Martin, H.Ueberberg, Ultrastructural investigation of the formation of Candida albicans germ tubes and septa, Sabouraudia, 16: 115 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    A.Cassone, E.Mattia, L.Boldrini, Agglutination of blastospores of Candida albicans by concanavalin A and its relationship with the distribution of mannan polymers and the ultrastructure of the cell wall, J.Gen.Microbiol., 105: 263 (1978).PubMedGoogle Scholar
  18. 18.
    G.Tronchin, D.Poulain, J.Biguet, Cytochemical and ultrastructural studies of the cell wall of Candida albicans. I.Localization of mannan by means of concanavalin A on ultrathin sections, Arch.Microbiol., 123: 245 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    A.Cassone, D.Kerridge, E.F.Gale, Ultrastructural changes in the cell wall of Candida albicans following cessation of growth and their possible relationship to the development of polyene resistance, J.Gen.Microbiol., 110: 339 (1979).PubMedGoogle Scholar
  20. 20.
    R.A.Venezia and R.C.Lachapelle, The use of ferritin-conjugated antibodies in the study of cell wall components of Candida albicans, Can.J.Microbiol., 19: 1445 (1973).PubMedCrossRefGoogle Scholar
  21. 21.
    G.Tronchin, D.Poulain, J.Herbaut, J.Biguet, Localization of chitin in the cell wall of Candida albicans by means of wheat germ agglutinin, Eur.J.Cell Biol., 26: 121 (1981a).PubMedGoogle Scholar
  22. 22.
    M.Pesti, E.K.Novak, L.Ferenczy, A.Svoboda, Freeze fracture electron microscopical investigation of Candida albicans cells sensitive and resistant to nystatin, Sabouraudia, 19: 17 (1981).PubMedCrossRefGoogle Scholar
  23. 23.
    G.Tronchin, D.Poulain, J.Herbaut, J.Biguet, Cytochemical and ultrastructural studies of Candida albicans. II. Evidence for a cell wall coat using Concanavalin A, J.Ultrastruct.Res., 75: 50 (198lb).Google Scholar
  24. 24.
    R.E.Cohen and C.E.Ballou, Linkage and sequence analysis of mannose-rich glycoprotein core oligosaccharides by proton nuclear magnetic resonance spectroscopy, Biochemistry, 19: 4345 (1980).PubMedCrossRefGoogle Scholar
  25. 25.
    P.K.Tsai, J.Frevert, C.E.Ballou, Carbohydrate structure of Saccharomyces cerevisiae mannoprotein, J.Biol.Chem., 259: 3805 (1984).PubMedGoogle Scholar
  26. 26.
    M.V.Elorza, A.Marcilla, R.Sentandreu, Wall mannoproteins of the yeast and mycelial cells of Candida albicana: Nature of the glycosidic bonds and polydispersity of their mannan moieties, J.Gen.Microbiol, 134: 2393 (1988).PubMedGoogle Scholar
  27. 27.
    E.Reiss, D.G.Patterson, L.W.Yert, J.S.Holler, B.K.Ibrahim, Structural analysis of mannans from Candida albicans serotypes A and B and from Torulopsi_glabrata by methylation gas chromatography, mass spectrometry and exo-a-mannanase, Biomed.Mass Sprectrom., 8: 252 (1981).CrossRefGoogle Scholar
  28. 28.
    H.F.Hasenclever and W.O.Mitchell, Antigenic studies of Candida. I.Obser.vation of two antigenic groups in Candida albicans, J Bacterial., 82: 570 (1961).Google Scholar
  29. 29.
    D.F.Summers, A.P.Grollman, H.F.Hasenclever, Polysaccharide antigens of the Candida cell wall, J.Tmmunol., 92: 491 (1964).Google Scholar
  30. 30.
    Y.Okubo, Y.Honma, S.Suzuki, Relationship between phosphate content and serological activities of the mannans of Candida albicans strains NIH A-207, NIH B-792, and J-1012, J Bacterial., 137: 677 (1979).Google Scholar
  31. 31.
    T.Nakajima and C.E.Ballou, Characterization of the carbohydrate fragments obtained from ftaccharomyces cerevisiae mannan by alkaline degradation, J.Biol.Chem., 249: 7679 (1974).PubMedGoogle Scholar
  32. 32.
    P.Gopal, P.A.Sullivan, M.G.Shepherd, Metabolism of (14C] glucose by regenerating spheroplasts of Candida albicans, J.Gen. Microbial., 130: 325 (1984 a).Google Scholar
  33. 33.
    C.E.Molloy, M.G.Shepherd, P.A.Sullivan, Identification of envelope proteins of Candida albicans by vectorial iodination, Microbias, 1989 (in press).Google Scholar
  34. 34.
    J.Frevert and C.E.Ballou, Saccharomyces cerevisiae structural cell wall mannoprotein, Biochemistry, 24: 753 (1985).PubMedCrossRefGoogle Scholar
  35. 35.
    P.K.Gopal, P.A.Sullivan, M.G.Shepherd, Isolation and structure of glucan from regenerating spheroplasts of Candida albicans, J Gen.Microbiol., 130: 1217 (1984b).PubMedGoogle Scholar
  36. 36.
    P.K.Gopal, M.G.Shepherd, P.A.Sullivan, Analysis of wall glucans from yeast, hyphal and germ-tube forming cells of Candida albicans, J.Gen.Microbiol., 130: 3295 (1984c).PubMedGoogle Scholar
  37. 37.
    D.R.Kreger and M.Kopecka, On the nature and formation of the fibrillar nets produced by protoplasts of Saccharomyces cerevisiae in liquid media: an electronmicroscopic, X-ray diffraction and chemical study, J.Gen.Microbiol., 92: 207, (1975).Google Scholar
  38. 38.
    R.Surarit, P.K.Gopal, M.G.Shepherd, Evidence for a glycosidic linkage between chitin and glucan in the cell wall of Candida albicans,.T.GPn.Microbiol., 134: 1723 (1988).Google Scholar
  39. 39.
    J.Friis and P.Ottolenghi, The genetically determined binding of Alcian blue by a minor fraction of yeast cell walls, Comp.Rend. Tray.Lab.Carlsbera., 37: 327 (1970).Google Scholar
  40. 40.
    R.H.Marchessault and Y.Deslandes, Texture and crystal structure of fungal polysaccharides, in: “Fungal Polysaccharides”, P.S. Sandford and K.Matsuda, eds., American Chemical Society Symposium Series No. 126, pp. 221–250, American Chemical Society, Washington DC (1980).Google Scholar
  41. 41.
    H.Saito, Conformation-dependent 13C chemical shifts: A new means of conformational characterization as obtained by high-resolution solid-state 13C NMR, Magnetic Resonance in Chemistry, 24: 835 (1986).Google Scholar
  42. 42.
    H.Saito, R.Tabeta, T.Sasaki, Y.Yoshioka, A high-resolution solid-state 13C NMR study of (1–3)-B-D-glucans from various sources. Conformational characterisation as viewed from the conformation-dependent 13C chemical shifts and its consequence to gelation property, Bull.Chem.Soc.Jpn., 59: 2093 (1986).CrossRefGoogle Scholar
  43. 43.
    C.Nombela, M.Molina, R.Cenamor, M.Sanchez, Yeast B-glucanases: a complex system of secreted enzymes, Microbiol.Sci., 5: 328 (1988).PubMedGoogle Scholar
  44. 44.
    R.Scheckman, Protein localization and membrane traffic in yeast. Ann.Rev.Cell Biol., 1: 115 (1985).CrossRefGoogle Scholar
  45. 45.
    D.E.Bianchi, The lipid content of cell walls obtained from juvenile, yeast-like and filamentous cells of Candida albicans, Ant. van Leeuwenhoek J., 33: 324 (1967).CrossRefGoogle Scholar
  46. 46.
    M.A.Ghannoum, G.Janini, L.Khamis and S.S.Radwan, Dimorphism-associated variations in the lipid composition of Candida albicans, J.Gen.Microbiol., 132: 2367 (1986).PubMedGoogle Scholar
  47. 47.
    H.Yamaguchi, Effect of biotin insufficiency on composition and structure of cell wall of Candida albicans in relation to its mycelial morphogenesis, J.Gen.Appl.Microbiol., 20: 217 (1974).CrossRefGoogle Scholar
  48. 48.
    W.L.Chaffin and D.M. Stocco, Cell wall proteins of Candida albicans, Can.J.Microbiol., 29: 1438 (1983).PubMedCrossRefGoogle Scholar
  49. 49.
    L.Rahary, R.Bonaly, J.Lematre, D.Poulain, Aggregation and disaggregation of Candida albicans germ-tubes, FEMS MicrobiöLett., 30: 383Google Scholar
  50. 50.
    B.J.Gilmore, E.M.Retsinas, J.S.Lorenz, M.K.Hostetter, An iC3b receptor on Candida albicans: Structure, function, and correlates for pathogenicity, J.Infect Dis., 157: 38 (1988).PubMedCrossRefGoogle Scholar
  51. 51.
    F.Heidenreich and M.P.Dierich, Candida albicans and Candida stellatoidea, in contrast to other Candide species, bind iC3b and C3d but not Cab, Tnfect.Tmmun. 50: 598 (1985).Google Scholar
  52. 52.
    A.Eigentler, T.F.Schulz, C.Larcher, E.Breitwieser, B.L.Myones, A.L.Petzer, M.P.Dierich, C3bi-binding protein on Candida albicans: temperature-dependent expression and relationship to human complement receptor Type 3, Infect.Immun., 57: 616 (1989).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • M. G. Shepherd
    • 1
  • P. K. Gopal
    • 1
  1. 1.Experimental Oral Biology UnitFaculty of DentistryDunedinNew Zealand

Personalised recommendations