Perspective of the Application of Molecular Biology Techniques in the Study of Candida

  • F. C. Odds
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 50)


Candida alhicans has proved to be a difficult organism to study in terms of its genetics and molecular biology; which is a pity, since the power of molecular genetic methods can greatly enhance the scientific quality of many experiments with the fungus. Because C.alhicans is diploid and has no natural sexual cycle, traditional approaches to mutation and genetic mapping have yielded few insights into the properties of its DNA. However, this position is at last beginning to change rapidly. Genes that code for products of importance in the study of C.albicans morphogenesis, responses to antifungal chemotherapy and the pathogenesis of candidosis are now being successfully cloned, and methods of DNA typing have been applied to epidemiological studies of candidosis. The future for molecular genetic approaches to Candida-related problems is a bright one. This brief overview will amount to a summary of the present state of the molecular genetic art in the context of Candida and Candida infections, with consideration of the problems where DNA-manipulative experimentation can be most usefully applied.


Candida Albicans Candida Species Candida Infection Aspartyl Proteinase Molecular Genetic Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.L. Whelan and P.T. Magee,Natural heterozygosity in Candida albicans, J. Bacteriol., 145: 896 (1981).PubMedGoogle Scholar
  2. 2.
    W.S. Riggsby, L.J. Torres-Bauza, J.W. Wills, T.M. Townes, DNA content, kinetic complexity, and the ploidy question in Candida albicans, Mol. Cell Biol, 2: 853 (1982).PubMedGoogle Scholar
  3. 3.
    R. Poulter, V. Hanrahan, K. Jeffery, D. Markie, M.G. Shepherd, P.A. Sullivan, Recombination analysis of naturally diploid Candida albicans, J.Bacteriol., 152: 969 (1982).PubMedGoogle Scholar
  4. 4.
    A.M.Gillum, E.Y.H. Tsay, D.R. Kirsch, Isolation of the Candida albicans gene for orotidine-5’-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E.coli pyrF mutations, Mol.Gen.Genet., 198: 179 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    P.T.Magee, E.H.A. Rikkerink, B.B.Magee, Review methods for the genetics and molecular biology of Candida albicans, Anal. Biochem., 175: 361 (1988).PubMedCrossRefGoogle Scholar
  6. 6.
    M.B.Kurtz, M.W. Cortelyou, D.R. Kirsch, Integrative transformation of Candida albicans, using a cloned Candida ADE2 gene, Mol. Cell Biol., 6: 142 (1986).PubMedGoogle Scholar
  7. 7.
    M.B. Kurtz, M.W. Cortelyou, S.M. Miller, M. Lai, D.R. Kirsch, Development of autonomously replicating plasmids for Candida albicans, Mol. Cell Biol., 7: 209 (1987).Google Scholar
  8. 8.
    R.Kelly, S.M.Miller, M.B. Kurtz, D.R. Kirsch, Directed mutagenesis in Candida albicans: one-step gene disruption to isolate ura3 mutants, Mol. Cell Biol., 7: 199 (1987).PubMedGoogle Scholar
  9. 9.
    R. Kelly, S.M. Miller, M.B. Kurtz, One-step gene disruption by contransformation to isolate double auxotrophs in Candida albicans, Mol. Gen. Genet., 214: 24 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    R.G.Snell, R.J. Wilkins, Separation of chromosomal DNA molecules from C. albicans in pulsed field gel electrophoresis, Nucl. Acid Res., 14: 4401 (1986).CrossRefGoogle Scholar
  11. 11.
    B.B. Magee, Y. Koltin, J.A. Gorman, P.T. Magee, Assigment of cloned genes to the seven electrophoretically separated Candida albicans chromosomes, Mol.Cell Biol., 8: 4721 (1988).PubMedGoogle Scholar
  12. 12.
    D.R.Soll, C.J.Langtimm, J.McDowell, J.Hicks, R.Galask, High-frequency switching in Candida strains isolated from vaginitis patients, J.Clin. Microbiol., 25: 1611 (1987).PubMedGoogle Scholar
  13. 13.
    S.Scherer, D.A. Stevens, A Candida albicans dispersed, repeated gene family and its epidemiologic applications, Proc.Nat.Acad.Sci. (USA), 85: 1452 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    J.E.Culter, P.M.Glee, H.L.Horn, Candida albicans and Candida stellatoidea-specific DNA fragment, J. Clin. Microbiol., 26: 1720 (1988).Google Scholar
  15. 15.
    D.R. Solly, M. Staebell, C. Longtimm, M. Pfaller, J. Hicks, T.V. Gopala Rao, Multiple Candida strains in the course of a single systemic infection, J. Clin, Microhiol., 26: 1448 (1988).Google Scholar
  16. 16.
    M.M.Mason, B.A.Lasker, W.S.Riggsby, Molecular probe for identification of medically important Candida species and Torulopsis glabrata, J. Clin.Microbiol., 25: 563 (1987).PubMedGoogle Scholar
  17. 17.
    B.B.Magee, T.M. D’Souza, P.T. Magee, Strain and species identification by restriction fragment length polymorphisms in the ribosomal DNA repeat of Candida species, J.Bacteriol., 169: 1639 (1987).PubMedGoogle Scholar
  18. 18.
    B.B. Magee and P.T. Magee, Electrophoretic karyotypes and chromosome number in Candida species, J.Gen.Microbiol., 133: 425 (1987).Google Scholar
  19. 19.
    P.D.Olivo, E.J. McManus, W.S. Riggsby, J.M. Jones, Mitochondrial DNA polymorphism in Candida albicans, J.Infect.Dis., 156: 214 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    W.L. Whelan, E.Reiss, B.B.Magee, B.L. Wickes, Genetic differences between type I and type II Candida stellatoidea, Infect. Immun., 57: 527 (1989).Google Scholar
  21. 21.
    B.C.Fox, H.L.T. Mobley, J.C. Wade, The use of a DNA probe for epidemiological studies of candidiasis in immunocompromised hosts. J.Infect. Dis., 159: 488 (1989).PubMedCrossRefGoogle Scholar
  22. 22.
    S.Scherer and D.A. Stevens, Application of DNA typing methods to the epidemiology and taxonomy of Candida species, J.Clin. Microbiol, 25: 675 (1987).PubMedGoogle Scholar
  23. 23.
    R.Matthews and J. Barnie, Assessment of DNA fingerprinting for rapid identification of outbreaks of systemic candidiasis, Br.Med. J., 298: 354 (1989).CrossRefGoogle Scholar
  24. 24.
    T.J.Lott, P. Boiron, E. Reiss, An electrophoretic karyotype for Candida albicans reveals large chromosomes in multiples, Mol.Gen. Genet., 209: 170 (1987).PubMedCrossRefGoogle Scholar
  25. 25.
    R.G.Snell, I.F. Hermans, R.J.Wilkins, B.E.Corner, Chromosomal variations in Candida albicans,Nuc1.Acid Res., 15: 3625 (1987).CrossRefGoogle Scholar
  26. 26.
    K.J. Kwon-Chung, B.L. Wickes, W.G. Merz, Association of electrophoretic karyotype of Candida stellatoidea with virulence for mice, Infect. Immun., 56: 1814 (1988).Google Scholar
  27. 27.
    W.G. Merz, C.Connelly, P. Hieter, Variation of electrophoretic karyotypes among clinical isolates of Candida albicans, J. Microbiol, 26: 842 (1988).Google Scholar
  28. 28.
    T.J. Lott, L.S. Page, P. Boiron, J. Benson, E. Reiss, Nucleotide sequence of the Candida albicans aspartyl proteinase gene, Nucl Acid Res., 17: 1779 (1989).CrossRefGoogle Scholar
  29. 29.
    P.J. Russell, J.A. Welsch, E.M. Rachlin, J.A. McCloskey, Different levels of DNA methylation in yeast and mycelial forms of Candida albicans, J.Bacteriol., 169: 4393 (1987).PubMedGoogle Scholar
  30. 30.
    D.R.Kirsch, M.H. Lai, J. O’Sullivan, Isolation of the gene for cytochrome P450 L1A1 (lanosterol 14a-demethylase) from Candida albicans, Gene, 68: 229 (1988).PubMedCrossRefGoogle Scholar
  31. 31.
    M.H.Lai and D.D.Kirsch, Nucleotide sequence of cytochrome P450 L1A1 (lanosterol 14a-demthylase) from Candida albicans, Nucl. Acid. Res., 17: 804 (1989).CrossRefGoogle Scholar
  32. 32.
    S.C. Singer, C.A. Richards, R.Ferone, D. Benedict, P. Ray, Cloning, purification and properties of Candida albicans thymidylate synthase, J.Bacteriol., 171: 1372 (1989).Google Scholar
  33. 33.
    A. Rosenbluh, M. Mevarech, Y. Koltin, J.A. Gorman, Isolation of genes from Candida albicans by complementation in Saccharomyces cerevisiae, Mol. Gen. Genet., 200: 500 (1985).CrossRefGoogle Scholar
  34. 34.
    M.B. Kurtz, D.R. Kirsch, R. Kelly, The molecular genetics of Candida albicans, Microbiol. Sci., 5: 58 (1988).PubMedGoogle Scholar
  35. 35.
    H.F. Jenkinson, G.P. Schep, M.G. Shepherd, Cloning and expression of the 3-isopropylmalate dehydrogenase gene from Candida albicans, FEMS Microbiol. Lett., 49: 285 (1988).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • F. C. Odds
    • 1
  1. 1.Department of MicrobiologyUniversity of LeicesterLeicesterUK

Personalised recommendations