Inositol 1,4,5-Trisphosphate Activates Ca2+ Channels in the Plasma Membranes of Rat Brain Nerve Terminals

  • M. Satoh
  • H. Ueda
  • S. Tamura
  • Y. Yoshihara
  • N. Fukushima
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 287)


There is accumulating evidence that a wide variety of stimulation of receptors by hormones and neurotransmitters results in increased phosphoinositide turnover and mobilization of Ca2+ from intracellular stores (Berridge and Irvine, 1989). Such post receptor mechanisms are relevant to the stimulation of phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate giving rise to diacylglycerol and to inositol 1,4,5-trisphosphate (IP3). Furthermore, IP3 mobilizes Ca2+ from microsomal organelles such as rough-and smooth-endoplasmic reticulum and calsiosome in various secretory cells (Henne et al., 1987; Payne and Fein, 1987; Volpe et al., 1988; see a review by Adbel-Latif, 1986). Thus, it is likely that the IP3-induced calcium mobilization from intracellular organelles is involved in hormone secretion by receptor stimulation.


Synaptic Plasma Membrane Fractional Release Inositol Trisphosphate Receptor Islet Activate Protein Intact Synaptosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Latif, A. A., 1986, Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers, Pharmacol. Rev., 38:227–272.PubMedGoogle Scholar
  2. Berridge, M. J. and Irvine, R. F., 1989, Inositol phosphates and cell signalling, Nature, 341:197–205.PubMedCrossRefGoogle Scholar
  3. Cockcroft, S. and Gomperts, B. D., 1985, Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase, Nature, 314:534–536.PubMedCrossRefGoogle Scholar
  4. Fabiato, A. and Fabiato, F., 1979, Calculator programs for computing the composition of the solutions cocntaining multiple metals and ligands used for experiments in skinned muscle cells, J. Physiol. (Paris), 75:463– 505.Google Scholar
  5. Furuichi, T., Yoshikawa, S., Miyawaki, A., Wada, K., Maeda, N. and Mikoshiba, K., 1989, Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400, Nature, 342:32–38.PubMedCrossRefGoogle Scholar
  6. Gerfen, C. R., Choi, W. C., Suh, P. G. and Rhee, S. G., 1988, Phospholipase C I and II brain isozymes: immunohistochemical localization in nueronal systems in rat brain, Proc. Natl. Acad. Sci. USA, 85:3208–3212.PubMedCrossRefGoogle Scholar
  7. Gilman, A. G., 1987, G protein: transducers of receptor generated signals, Ann. Rev. Biochem., 56:615–649.PubMedCrossRefGoogle Scholar
  8. Gray, E. G. and Whittaker, V. P., 1962, The isolation of nerve endings from brain: an electronmicroscopic study of fragments derived from homogenization and centrifugation, J. Anat. (Lond.), 96:79–86.Google Scholar
  9. Henne, V., Piiper, A. and Soling, H.-D., 1987, Inositol 1,4,5-trisphosphate and 5′-GTP induced calcium release from different intracellular pools, Febs Lett., 218:153–158.PubMedCrossRefGoogle Scholar
  10. Inamitsu, T. and Ohtsuki, I., 1984, Characterization of ATP-dependent Ca2+ uptake by canine brain microsomes with saponin, Eur. J. Biochem., 145: 115–121.PubMedCrossRefGoogle Scholar
  11. Janicki, P. K. and Lipkowski, A. W., 1983, Kyotorphin and D-kyotorphin stimulate met-enkephalin release from rat striatum in vitro, Neurosci. Lett., 43:73–77.PubMedCrossRefGoogle Scholar
  12. Kasper, C. B., 1971, Biochemical distinctions between the nuclear and microsomal membranes from rat hepatocytes, J. Biol. Chem., 246:577–581.PubMedGoogle Scholar
  13. Kuno, M. and Gardner, P., 1987, Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes, Nature, 326: 301–304.PubMedCrossRefGoogle Scholar
  14. Maeda, N., Niinobe, M., Inoue, Y. and Mikoshiba, K., 1989, Developmental expression and intracellular location of P400 protein characterstic of Purkinje cells in the mouse cerebellum, Dev. Biol., 133:67–76.PubMedCrossRefGoogle Scholar
  15. Payne, R. and Fein, A., 1987, Inositol 1,4,5-trisphosphate releases calcium from specialized sites with Limulus photoreceptors, J. Cell Biol., 104; 933–937.PubMedCrossRefGoogle Scholar
  16. Penner, R., Matthews, G. and Neher, E., 1988, Regulation of calcium influx by second messengers in rat mast cells, Nature, 334:499–504.PubMedCrossRefGoogle Scholar
  17. Racknam, A., Wood, P. L. and Hudgin, R. L., 1982, Kyotorphin (tyrosine-arginine): further evidence for indirect opiate receptor activation,Life Sci., 30:1337–1342.CrossRefGoogle Scholar
  18. Takagi, H., Shiomi, H., Ueda, H. and Amano, H., 1979, A novel analgesic dipeptide from bovine brain is a possible met-enkephalin releaser, Nature, 282:410–412.PubMedCrossRefGoogle Scholar
  19. Ueda, H., Shiomi, H. and Takagi, H., 1980, Regional distribution of a novel analgesic dipeptide, kyotorphin (Tyr-Arg) in the rat brain and spinal cord, Brain Res., 198:460–464.PubMedCrossRefGoogle Scholar
  20. Ueda, H., Yoshihara, Y., Fukushima, N., Shiomi, H., Nakamura, A. and Takagi, H., 1987, Kyotorphin (tyrosine-arginine) synthetase in rat brain synaptosomes, J. Biol. Chem., 262:8165–8173.PubMedGoogle Scholar
  21. Ueda, H., Yoshihara, Y., Misawa, H., Fukushima, N., Kakada, T., Ui, M., Takagi, H. and Satoh, M., 1989, The kyotorphin (Tyrosine-Arginine) receptor and a selective reconstitution with purified Gi ,measured with GTPase and phospholipase C assays, J. Biol. Chem., 264:3732–3741.PubMedGoogle Scholar
  22. Ueda, H., Yoshihara, Y. and Takagi, H., 1986, A putative met-enkephalin releaser, kyotorphin enhances intracellular Ca2+ in the synaptosomes, Biochem. Biophys. Res. Commun., 137:897–902.PubMedCrossRefGoogle Scholar
  23. Verity, M. A., 1972, Cation modulation of synaptosomal respiration, J. Neurochem., 19:1305–1317.PubMedCrossRefGoogle Scholar
  24. Verma, A. K., Filoteo, A. G., Stanford, D. R., Wieben, E. D., Penniston, J. T., Strehler, E. E., Fischer, R., Heim, R., Vogel, G., Mathews, S., Strehler-Page, M.-A., James, P., Vorherr, T., Krebs, J. and Carafoli, E., 1988, Complete primary structure of a human plasma membrane Ca2+ pump, J. Biol. Chem., 263:14152–14159.PubMedGoogle Scholar
  25. Volpe, P., Krause, K.-H., Hashimoto, S., Zorzato, F., Pozzan, T., Meldolesi, J. and Lew, D. P., 1988, “Calciosome”, a cytoplasmic organelle: the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of nonmuscle cells?, Proc. Natl. Acad. Sci. USA, 85:1091–1095.PubMedCrossRefGoogle Scholar
  26. Whittaker, V. P., Michaelson, I. A. and Kirkland, R. J., 1964, The separation of synaptic vesicles from nerve-ending particles (synaptosomes), Biochem. J., 90:293–303.PubMedGoogle Scholar
  27. Worley, P. F., Baraban, J. M., Supattapone, S., Wilson, V. S. and Snyder, S. H., 1987, Characterization of inositol trisphosphate receptor binding in brain, J. Biol. Chem., 262:12132–12136.PubMedGoogle Scholar
  28. Yoshihara, Y., Ueda, H., Fujii, N., Shide, A., Yajima, H. and Satoh, M., 1990, Purification of a novel type of calcium-activated neutral protease from rat brain -possible involvement in production of the neuropeptide, kyotorphin, from calpastatin fragments, J. Biol. Chem. (in press).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • M. Satoh
    • 1
  • H. Ueda
    • 1
  • S. Tamura
    • 1
  • Y. Yoshihara
    • 1
  • N. Fukushima
    • 1
  1. 1.Department of Pharmacology, Faculty of Pharmaceutical SciencesKyoto UniversitySakyo-ku, Kyoto 606Japan

Personalised recommendations