Advertisement

Expression of the GABAB Receptor in Xenopus Oocytes and Desensitization by Activation of Protein Kinase C

  • Kohtaro Taniyama
  • Koichiro Takeda
  • Hiroshi Ando
  • Chikako Tanaka
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 287)

Abstract

The γ-aminobutyric acid (GABA) receptors have been classified into two subtypes, termed GABAA and GABAB receptors, in the basis of their pharmacological properties (Bowery et al., 1984; 1989; Bormann, 1988). The GABAA receptor with its integrated Cl-channel is now well characterized. Studies revealed the amino acid sequence of the GABAA receptor (Schofield et al., 1987; Levitan et al., 1988). Stimulation of the GABAB receptor has been shown to induce two membrane effects, namely reduction in Ca2+ conductance and increase in K+ conductance (Bormann, 1988; Bowery, 1989), however, the GABAB receptor has not been purified. The expression of GABAB receptor in the Xenopus oocytes may provide information on molecular mechanisms of GABAB receptor-mediated responses.

Keywords

GABAA Receptor Xenopus Oocyte Phorbol Ester Pertussis Toxin GABAB Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrade, R., Malenka, R.C. and Nicoll, R.A., 1986, A G protein couples serotonin and GABAB receptors to the same channels in hippocampus, Science 234: 1261–1265.PubMedCrossRefGoogle Scholar
  2. Bormann, J., 1988, Electrophysiology of GABAA and GABAB receptor subtypes, Trend. Neurosci. 11: 112–116.PubMedCrossRefGoogle Scholar
  3. Bouvier, M., Leeb-Lundberg, L.M.F., Benovic, J.L., Caron, M.G. and Lefkowitz, R.J., 1987, Regulation of adrenergic receptor function by phosphorylation. II. effects of agonist occupancy on phosphorylation of α1- and β2-adrenergic receptors by protein kinase C and the cyclic AMP-dependent protein kinase. J. Biol. Chem. 262:3106–3113.PubMedGoogle Scholar
  4. Bowery, N.G., 1989, GABAB receptors and their significance in mammalian pharmacology, Trends Pharmacol. Sci. 10: 401–407.PubMedCrossRefGoogle Scholar
  5. Bowery, N. G., Price, G. W., Hudson, A. L., Hill, D. R., Wilkin, G. P. and Turnbull, M. J., 1984, GAB A receptor multiplicity, Neuropharmacol. 23: 219–231.CrossRefGoogle Scholar
  6. Colmers, W.F. and Pittman, Q.J., 1989, Presynaptic inhibition by neuropeptide Y and baclofen in hippocampus: insensitivity to pertussis toxin treatment, Brain Res. 498: 99–104.PubMedCrossRefGoogle Scholar
  7. Costa, M.R.C. and Catterall, W.A., 1985, Phosphorylation of the a subunit of the sodium channel by protein kinase C, Cell. Mol. Neurobiol. 4: 291–297.CrossRefGoogle Scholar
  8. Dascal, N., 1987, The use of Xenopus oocytes for the study of ion channels, CRC Crit. Rev. Biochem. 22: 317–387.PubMedCrossRefGoogle Scholar
  9. Dascal, N., Ifune, C., Hopkins, R., Snutch, T. P., Lubbert, H., Davidson, N., Simon, M. I. and Lester, H. A., 1986, Involvement of a GTP-binding protein in mediation of serotonin and acetylcholine responses in Xenopus oocytes injected with rat brain messenger RNA, Mol. Brain Res. 4: 97–105.Google Scholar
  10. Dascal, N., Lotan, I., Gillo, B., Lester, H.A. and Lass, Y., 1985, Acetylcholine and phorbol esters inhibit potassium currents evoked by adenosine and cAMP in Xenopus oocytes, Proc. Natl. Acad. Sci. USA 82: 6001–6005.PubMedCrossRefGoogle Scholar
  11. Deisz, R.A. and Lux, H.D., 1985, ϒ-Aminobutyric acid induced depression of calcium currents of chick sensory neurones, Neurosci. Lett. 56, 205–210.PubMedCrossRefGoogle Scholar
  12. Dolphin, A.C. and Scott, R.H., 1987, Calcium channel currents and their inhibition by (-)baclofen in rat sensory neurones: modulation by guanine nucleotides, J. Physiol. 386: 1–17.PubMedGoogle Scholar
  13. Dutar, P. and Nicoll, R.A., 1988a, A physiological role for GABAB receptors in the central nervous system, Nature 332, 156–158.PubMedCrossRefGoogle Scholar
  14. Dutar, P. and Nicoll, R.A., 1988b, Pre-and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties, Neuron 1: 585–591.PubMedCrossRefGoogle Scholar
  15. Gahwiler, B.H. and Brown, D.A., 1985, GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures, Proc. natl. Acad. Sci. USA 82, 1558–1562.PubMedCrossRefGoogle Scholar
  16. Gundersen, C. B., Miledi, R. and Parker, I., 1983, Serotonin receptors induced by exogenous messenger RNA in Xenopus oocytes, Proc. R. Soc. Lond. B219: 103–109.CrossRefGoogle Scholar
  17. Gundersen, C. B., Miledi, R. and Parker, I., 1984, Glutamate and kainate receptors induced by rat brain messenger RNA in Xenopus oocytes, Proc. R. Soc. Lond. B 221: 127–143.PubMedCrossRefGoogle Scholar
  18. Harada, Y., Takahashi, T., Kuno, M., Nakayama, K., Masu, Y. and Nakanishi, S., 1987, Expression of two different tachykinin receptors in Xenopus oocytes by exogenous mRNAs, J. Neurosci. 7: 3265–3273.PubMedGoogle Scholar
  19. Hirono, C., Ito, H. and Sugiyama, H., 1987, Neurotensin and acetylcholine evoke common responses in frog oocytes injected with rat brain messenger ribonucleic acid, J. Physiol. 382: 523–535.PubMedGoogle Scholar
  20. Holz, G.G., Rane, S.G. and Dunlap, K., 1986, GTP binding proteins mediate transmitter inhibition of volatage-dependent calcium channels, Nature 319, 670–672.PubMedCrossRefGoogle Scholar
  21. Houamed, K.M., Bilbe, G., Smart, T.G., Constanti, A., Brown, D.A., Barnard, E.A. and Richards, B.M., 1984, Expression of functional GABA, glycine and glutamate receptors in Xenopus oocytes injected with rat brain mRNA, Nature 310: 318–321.PubMedCrossRefGoogle Scholar
  22. Huganir, R.L., Miles, K. and Greengard, P., 1984, Phosphorylation of the nicotinic acetylcholine receptor by an endogenous tyrosine-specific protein kinase, Proc. Natl. Acad. Sci. USA 81, 6968–6972.PubMedCrossRefGoogle Scholar
  23. Inoue, M., Matsuo, T. and Ogata, N., 1985, Baclofen activates voltage-dependent and 4-aminopyridine sensitive K+ conductance in guinea-pig hippocampal pyramidal cells maintained in vitro, Br. J. Pharmacol. 84: 833–841.PubMedGoogle Scholar
  24. Kaczmarek, L. K., 1987, The role of protein kinase C in the regulation of ion channels and neurotransmitter release, Trend, neurosci., 10: 30–34.CrossRefGoogle Scholar
  25. Katada, T., Gilman, A.G., Watanabe, Y., Bauer, S. and Jacobs, K.H., 1985, Protein kinase C phosphorylates the inhibitory guanin-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase, Eur. J. Biochem. 151: 431–437.PubMedCrossRefGoogle Scholar
  26. Kato, K., Kaneko, S. and Nomura, Y., 1988, Phorbol ester inhibition of current responses and simultaneous protein phosphorylation in Xenopus oocyte injected with brain mRNA, J. Neurochem. 50: 766–773.PubMedCrossRefGoogle Scholar
  27. Leeb-Lundberg, L.M.F., Cotecchia, S., Lomosney, J.W., DeBernardis, L.F., Lefkowitz, R.J. and Caron, M.G., 1985, Phorbol esters promote α1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism, Proc. Natl. Acad. Sci. 82: 5651–5655.PubMedCrossRefGoogle Scholar
  28. Leonard, J.P., Nargeot, J., Snutch, T.P., Davidson, N. and Lester, H.A., 1987, Ca channels induced in Xenopus oocytes by rat brain mRNA, J. Neurosci. 7: 875–881.PubMedGoogle Scholar
  29. Levitan, E. S., Schofield, P. R., Burt, D. R., Rhee, L. M., Wisden, W., Kohler, ML, Fujita, N., Rodriguez, H. F., Stephenson, A., Darlison, M. G., Barnard, E. A.,and Seeburg, P. H., 1988, Structural and functional basis for GABAA receptor heterogeneity, Nature 335: 76–79.PubMedCrossRefGoogle Scholar
  30. Lory, P., Richard, S., Rassendren, F. A., Tiaho, F. and Nargeot, J., 1989, Electrophysiological expression of endothelin and angiotensin receptors in Xenopus oocytes injected with rat heart mRNA, FEBS Lett. 258: 289–292.PubMedCrossRefGoogle Scholar
  31. Lubbert, H., Snutch, T. P., Dascal, N., Lester, H. A. and Davidson, N., 1987, Rat brain 5HTj. receptors are encoded by a 5–6 kbase mRNA size class and are functionally expressed in injected Xenopus oocytes, J. Neurosci. 7: 1159–1165.PubMedGoogle Scholar
  32. Moran, O. and Dascal, N.,1989, Protein kinase C modulates neurotransmitter responses in Xenopus oocytes injected with rat brain RNA, Mol. Brain Res. 5: 193–202.PubMedCrossRefGoogle Scholar
  33. Nestler, E. J., Walaas, S. I. and Greengard, P., 1984, Neuronal phosphoproteins: Physiological and clinical implications, Science 225: 1357–1364.PubMedCrossRefGoogle Scholar
  34. Newberry, N.R. and Nicoll, R.A., 1984, Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells, Nature 308: 450–452.PubMedCrossRefGoogle Scholar
  35. Newberry, N.R. and Nicoll, R.A., 1985, Comparison of the action of baclofen with ϒ-aminobutyric acid on rat hippocampal pyramidal cells in vitro, J. Physiol. 360: 161–185.PubMedGoogle Scholar
  36. Nishizuka, Y., 1984, Turnover of inositol phospholipid and signal transduction, Science 225: 1365–1370.PubMedCrossRefGoogle Scholar
  37. Nishizuka, Y., 1988, The molecular heterogeneity of protein kinase C and its implications for cellular regulation, Nature 334: 661–665.PubMedCrossRefGoogle Scholar
  38. Parker, I., Sumikawa, K. and Miledi, F. R. S., 1986, Neurotensin and substance P receptors expressed in Xenopus oocytes by messenger RNA from rat brain, Proc. R. Soc. Lond. B 229: 151–159.PubMedCrossRefGoogle Scholar
  39. Rane, S.G. and Dunlap, K., 1986, Kinase C activator 1,2-oleoylacetylglycerol attenuates voltage-dependent calcium current in sensory neurons, Proc. Natl. Acad. Sci. USA 83, 184–188.PubMedCrossRefGoogle Scholar
  40. Robertson, B. and Taylor, W.R., 1986, Effects of ϒ-aminobutyric acid and (-)-baclofen on calcium and potassium currents in cat dorsal root ganglion neurones in vitro, Br. J. Pharmacol. 89: 661–672.PubMedGoogle Scholar
  41. Schofield, P. R., Darlison, M. G., Fujita, N., Burt, D. R., Stephenson, F. A., Rodriguez, H., Rhee, L. M., Ramachandran, J., Reale, V., Glencorse, T. A., Seeburg, P. H. and Barnard, E. A., 1987, Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor superfamily, Nature 328: 221–227.PubMedCrossRefGoogle Scholar
  42. Sigel, E. and Baur, R., 1988, Activation of protein kinase C differentially modulates neuronal Na+, Ca2+, and ϒ-aminobutyrate type A channels, Proc. Natl. Acad. Sci. USA 85: 6192–6196.PubMedCrossRefGoogle Scholar
  43. Snutch, T. P., 1988, The use of Xenopus oocytes to probe synaptic communication, Trend. Neurosci. 11: 250–256.PubMedCrossRefGoogle Scholar
  44. Sugiyama, H., Hisanaga, Y. and Hirono, C., 1985, Induction of muscarinic cholinergic responsiveness in xenopus oocytes by mRNA isolated from rat brain, Brain Res. 338: 346–350.PubMedCrossRefGoogle Scholar
  45. Sugiyama, H., Ito, I. and Hirono, C., 1987, A new type of glutamate receptor linked to inositol phospholipid metabolism, Nature 325: 531–533.PubMedCrossRefGoogle Scholar
  46. Tanaka, C., Saito, N., Kose, A., Hosoda, K., Sakaue, M., Shuntoh, H., Nishino, N and Taniyama, K., 1988, Possible roles of protein kinase C in neurotransmission, p 277–285, in: “Neuroreceptors and signal transduction”, S. Kito, T. Segawa, K. Kuriyama, M. Tohyama and R. W. Olsen, eds., Plenum Publishing Corp., New York.Google Scholar
  47. Verdoorn, T. A., Kleckner, N. and Dingledine, R., 1987, Rat brain N-methyl-D-aspartate receptors expressed in xenopus oocytes, Science 238: 1114–1116PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Kohtaro Taniyama
    • 1
  • Koichiro Takeda
    • 1
  • Hiroshi Ando
    • 1
  • Chikako Tanaka
    • 1
  1. 1.Department of PharmacologyKobe University School of MedicineKobe 650Japan

Personalised recommendations